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PREFACE.

THE recent advances made in the utilization of alter-

nating currents and alternating current apparatus of all

descriptions have been of such importance that there

are now many interested in this field of work who desire

to become conversant with the underlying principles of

the subject in order that they may become better

equipped to undertake the vast engineering problems
which are constantly arising. In its newness, the theory
of alternating currents has been developed this way and

that, added to here and there, so that it is necessary
for one to stop and consider the basis from which cer-

tain conclusions are reached, and the logical sequence

by which the results are attained. Although many of

the problems which arise have been fully treated by
various writers, the solutions have as a rule been limited

in their application to certain special cases, and have

for the most part been presented in a fragmentary man-

ner. This lack of a clear and succinct treatment, suffi-

ciently broad to be general in its application, has been

strongly felt, and it is in order to meet this demand for

definite information in regard to the fundamental prin-

ciples governing the flow of variable or alternating cur-

rents that this work is now presented to the public.

The purpose has been to use such mathematical terms

and analytical methods as make it possible for the dem-
1

859400



2 PREFACE.

onstrations to be exact and rigorous, and at the same

time to express the results in such a way as to be per-

fectly intelligible to those who do not desire to follow

the methods of proof, but are only interested in the con-

clusions reached.

There are some to whom graphical methods appeal
more strongly than analytical processes, and the cases

of simple circuits have accordingly been fully treated in

both ways. The problems of divided circuits and net-

works of conductors yield the more readily to graphical

treatment, inasmuch as analytical methods necessarily

become cumbersome and involved and do not appeal

directly to the senses. The subject is therefore capable
of two natural divisions, the analytical, which constitutes

Part I., and the graphical, which constitutes Part II.

In Part I. the discussion of circuits containing re-

sistance and self-induction only is first taken up, and the

first chapter contains the elementary principles neces-

sary for the establishment of the equation of energy for

such circuits. This equation is logically developed
from the experiments of Coulomb, Faraday, Joule, and

Ohm, upon which depends all the modern science of

electricity. The treatment is based upon simple ele-

mentary ideas and is complete in itself, so that no pre-

vious knowledge of the theory of electricity and mag-
netism is requisite. Taking the equation of energy as a

basis, in the following chapters the general solution for

the current is obtained, after which the various particu-

lar cases are taken up, in which the electromotive force

is assumed to vary as some definite function of the time.

The solution for each particular case is derived inde-

pendently from the differential equations and also from

the general integral equation.

Inasmuch as the assumption of an harmonic electro-

motive force often approximates to the truth, a chapter
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lias been devoted to the discussion of harmonic func-

tions in order that the solutions obtained under such an

assumption may be the more clearly understood.

As is explained in the introductory chapter, the coeffi-

cient of self-induction L is considered constant, whereas

this is only strictly true if the permeability of the sur-

rounding medium is also constant. That this assump-
tion is nearly correct is readily seen by noting the curves

of magnetization for various commercial irons given by
Prof. Ewing, and by Mr. Steinmetz and Mr. M. E.

Thompson in this country, for it is not until a higher

degree of magnetization is reached than is ordinarily

met with in actual practice, that these curves deviate

materially from a straight line.

After the completion of the treatment of circuits con-

taining resistance and self-induction, the discussion of cir-

cuits containing resistance and capacity is taken up and

developed in a similar manner from elementary princi-

ples. From the simple ideas of static charge, the mean-

ing of potential and work is shown, leading up to the

derivation of the equation of energy and electromotive

forces for a circuit containing a condenser. Following
the same plan as in the treatment of circuits containing

self-induction, the general solution is first obtained, and

we thus have the expression for the current and charge
at any time for any impressed electromotive force what-

soever. Particular electromotive forces are then as-

sumed, and the solutions for these cases are obtained

from the general integral equation, and also independ-

ently by particular solutions.

The general case of circuits containing resistance, self-

induction, and capacity is next taken up, and the same

order of treatment is followed as in the discussion of

circuits containing resistance and self-induction only,

and resistance and capacity only. Now that the con-
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denser, as well as its older brother, the transformer, is

being applied to practical uses, the question of the action

of a condenser in a circuit with self-induction becomes

an important one, and the discussion of this case is given

at length, the same method of giving particular cases

after the general solution being followed as before. The

case of oscillatory and non-oscillatory charge is treated

at length as well as the corresponding case of discharge.

In order that the effects caused by the variation of the

constants of a circuit may be clearly understood, curves

are drawn showing these effects for certain particular

cases. The nature of the flow of current immediately
after making a circuit is then investigated, and the re-

sults shown by plotting the instantaneous values for a

particular case. The neutralizing effects of self-induc-

tion and capacity are next discussed, and the necessary

conditions ascertained under which not only the instan-

taneous values of the current will be the same as though
the self-induction and capacity were absent, but likewise

the thermic and dynamometric effects.

The first part closes with an investigation of the

nature of wave propagation in a conductor possessing

self-induction and distributed capacity, a subject which

assumes importance in submarine cables and in ex-

tended telephone circuits.

The results obtained by analytical processes too often

fail to carry their full significance while in symbolic

form, and for this reason it has been found advisable to

give applications to concrete cases, and to draw curves

illustrating the points involved. In order that the full

significance of the results may be grasped, the values of

the quantities used in these numerical examples have in

all cases been given, so that the curves plotted show not

only the general nature of the relations between the

various quantities, but also the value of these quantities
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in the particular cases assumed. The advantage of this

is especially shown in the discussion of the effects of the

variation of the constants in a circuit containing resist-

ance, self-induction and capacity, for it is the illustra-

tions which here bring out the true significance of the

effects.

In Part II. the same order is followed as in Part I.

The graphical method of treating problems of simple

circuits containing resistance and self-induction is first

fully established from the analytical results obtained in

Part I., and is then extended to problems arising in the

case of combination circuits. Problems arising in the

case of simple and combination circuits containing re-

sistance and capacity but no self-induction are then

solved, and finally the general case of circuits containing

resistance, self-induction and capacity is taken up, and

the graphical solutions given for series, parallel and

combined circuits.

The graphical methods are rigorously proved by the

analytical solutions obtained in the earlier part of the

book, but the development is such that those who do

not follow through the analytical proof may readily

apply these graphical methods to the solution of practi-

cal problems.
In order to avoid ambiguity, the same symbols are

used throughout with the same signification, and a list

of symbols used, together with their meanings, is given

in an appendix.

There have been many valuable papers on subjects

relating to alternating currents, among others those by
Dr. Duncan and Prof. Ryan in this country, and by Prof.

Ayrton, Dr. Sumpner, Dr. Fleming, and Mr. Blakesley in

England, and the electrical public has gained much in-

formation from the excellent works of the last two

writers. The subject has not, however, been hitherto
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developed in the way followed in the succeeding pages,

and it is in order to meet the demand for a logical treat-

ment of the theory of alternating currents that this book

has been prepared.

Much of the matter here contained has already been

given by the writers in various papers, some of which

originally appeared as a series of articles in the Electrical

World, and others in the London Electrician, the Philo-

sophical Magazine, the American Journal of Science, and

the Transactions of the American Institute of Electrical En-

gineers. We have been permitted to use some of the

cuts from the latter, for which courtesy we desire to

extend our thanks.

The matter contained in the second part now appears
for the first time, with the exception of the method for

obtaining the equivalent resistance, self-induction and

capacity of parallel circuits, which was first given in the

Philosophical Magazine.

In all cases these papers have been carefully revised

and rewritten, and in many cases amplified to suit the

requirements of the book.

CORNELL UNIVERSITY, ITHACA, N. Y.,

August, 1892.

PREFACE TO FOURTH EDITION.

IN the preparation of the fourth edition for press no

material changes have been made either in the subject-

matter or in the arrangement.
f ~*>NELL UNIVERSITY, 1901.
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CHAPTER I.

INTRODUCTORY TO CIRCUITS CONTAINING RESISTANCE
AND SELF INDUCTION.

CONTENTS: Magnet. Lines of force. Field of force. Pole. North pole.

Like poles repel, unlike attract. Unit pole. Law of attraction. In-

tensity of a field of force. Uniform field. Unit line of force. Unit

pole lias 4tf lines of force. Induction. Current develops a field. Unit

current. Number of lines proportional to current. Self-induction.

E. M. F. Ohm's law. Quantity. Quantity definite for definite change
in lines. Joule's law. Energy dissipated in heat. Total energy im-

parted to a circuit. Energy expended in field. Equation of energy.

Equation of E. M. F.'s.

IN order that circuits containing resistance and self-

induction may be properly discussed, a brief review will

first be given of the elementary theory of magnetism, the

nature of the magnetic field, and the relation between a

current of electricity and magnetism. Those well-known

elements of the subject will be presented which enable us-

to obtain expressions for the energy imparted to a circuit,,

the energy dissipated in heat, and the energy expended in

the magnetic field, and finally to establish the equation of

energy and the equation of electromotive forces for circuits

with resistance and self-induction.

If a needle is magnetized uniformly in the direction of

its length and placed in iron filings, the filings are at-

tracted to the ends of the needle and become attached

thereto in clusters. The attractive power of the magnet-
17
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ized needle is apparently concentrated at the ends, which

are called poles. The filings in the space around the

magnet tend to gather in lines, called lines offorce, extend-

ing from 4^0:p^e f *k ft needle to the other. Thus the

magnet is seen to be surrounded by afield offorce, in which

the lines indicate the direction of the force at any point of

the field. When a compass-needle is placed in the field, it

always assumes a definite position, tangent to the line of

force passing through that point. The earth acts like a

huge magnet, producing a magnetic field in which the

lines of force have a direction nearly north and south. A
magnetized needle freely suspended in the earth's magnetic
field assumes a definite position tangent to the earth's lines

of force. This position is usually nearly in the geographical

meridian, the magnet having one pole toward the north

and the other toward the south. The pole that is toward

the north is called the positive pole, marked -\- ;
and the

opposite pole the negative, marked . When magnetic

poles are brought near one another there is found to be

either an attraction or a repulsion between them, and two

poles which have the same sign tend to repel one another,

while two poles of opposite sign tend to attract one another.

The definition of a unit magnetic pole would therefore

naturally be : a magnetic pole which exerts a force of one

dyne* upon another equal pole at a distance of one centi-

* Our knowledge of the physical universe is obtained from our per-

ception of matter in its relations to time and space; and physical measure-

ments are, accordingly, measurements of mass, length, and time. Any

quantity can be expressed in terms of these three, and the units in which

the quantity is measured can be expressed in the three fundamental units

of length, mass, and time. The fundamental units commonly used to

measure length, mass, and time are the centimetre, gramme, and second
;

these are arbitrarily selected, and give rise to the C. G. S. system of units.

All other units are readily obtained from these and are called derived units.

The velocity of a body moving uniformly is the space passed over in a unit

time. For a body having a variable motion, the velocity is equal to an
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metre. Such a magnetic pole as this just defined forms the

foundation upon which is based the whole system of electro-

magnetic units, those of current, electromotive force, etc.;

and it therefore deserves attention.

This definition depends upon the exact measurement of

the distance between two poles. But in reality magnetic

poles have finite dimensions and it is necessary to deter-

mine the mean distance between them. The distance

taken is that between two points so situated that the action

between the two poles would be the same if they were

concentrated at these two points. We therefore think of

a magnetic pole as concentrated at a point. This concep-
tion is no more strained than the conception of centre of

gravitative attraction of a body, where we consider the

whole mass of the body as concentrated at a point.

The length of a compound pendulum is measured in a

similar way, by considering that the mass of the pendulum
is concentrated at such a point that the time of oscillation

is not changed.

element of the distance ds, divided by the time dt
t
in which the distance

ds is traversed; that is, velocity equals the rate of change of length with

respect to time, v = --. In the C. G. S. system velocity is measured in

centimetres per second. The acceleration of the body is the rate at which

the velocity is changing; that is, a = -- = -- In the C. G. S. system
at at*

acceleration is measured in centimetres per second.

By Newton's first law, every body continues in a state of rest, or of uni-

form motion in a straight line, except in so far as it may be compelled by
impressed forces to change that state. Force may be defined as that which
causes or tends to cause a change in the velocity of a body. The unit of

force is that force which causes a unit change in velocity of a unit mass
in unit time, that is, produces unit acceleration. In the C. G. S. system
the unit of force is the dyne, and is the force which, when acting for one

second, will give a mass of one gramme a velocity of one centimetre per
second.
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LAW OF ATTKACTION.

The law of the action between magnetic poles, as ex-

perimentally determined by Coulomb, is that the attraction

or repulsion between two poles is inversely as the square
of the distance between them, and directly as the product
of their strengths ;

that is,

where m and mf
are the strengths of the poles, that is, the

number of unit poles to which each is equivalent, and r

the distance between them.

A unit pole being as previously defined, the sign of

variation may be changed for one of equality if the dis-

tance r is measured in centimetres and the force F is

measured in dynes. The force between two magnetic poles

is then

When the poles considered have the same sign, and are

both north poles or both south poles, the product m m' is

positive, and a force of repulsion has the positive sign.

Similarly, a force of attraction has a negative sign.

INTENSITY OF A FIELD OF FORCE.

The strength of a magnetic field of force at any point is

measured by its action on a unit positive magnetic pole at

that point.

If we could place a free magnetic pole in a magnetic

field, it would always be urged in a certain direction ; and,

if free to move, would actually move in this direction.

The direction in which a positive pole would be urged is

called the positive direction of the line of force which
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passes through the pole. The force with which a unit

positive pole would be urged at any point of a magnetic

field is the strength of the field at that point, and is usually

denoted by H.

Usually it is found that H varies at different points in

the field
;
but if H has the same value at every point, both

in magnitude and in direction, the field is said to be uni-

form.

If the uniform field be one of unit intensity, then H =
1,

and there is said to be one line offeree per square centi-

metre
;
and when the intensity is H, there are H lines of

force per square centimetre. Thus the intensity of a mag-
netic field is thought of as being determined by the number

of lines which pass through one square centimetre of a

surface normal to the direction of the lines of force.

As an example, by the definition of a unit pole the in-

tensity of the field H is unity at a distance of one centime-

tre from the pole. If a sphere be described about the unit

pole as a centre, having a radius of one centimetre, there is

consequently one line of force passing through the surface

of the sphere for every square centimetre. As the surface

of the sphere contains 4 n square centimetres, there are in

all 4 n lines of force that emanate from a unit pole, and

4 it m lines from a pole whose strength is m.

INDUCTION.

The number of lines of force in air is the same as the

number of lines of magnetizing force. In a magnetic sub-

stance, such as iron, the number of lines of force is greatly

increased, and they are then called lines of magnetization,

or lines of induction.

The number of lines of induction N, passing through

any area, is called the total magnetic induction through

this area. The total number of lines of force per square
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centimetre of area normal to these lines is called the in-

duction per square centimetre, or simply the induction, B.

In a non-magnetic medium the induction B is equal to the

magnetizing force, H. In a magnetic medium, such as iron,

the magnetizing force produces an induction B greater

than H. The ratio of the induction to the magnetizing

force is called the permeability, /* ; that is, /t =: JL
H

A current of electricity flowing in a circuit always pro-

duces a magnetic field in the surrounding region. The

lines of force which constitute this field are always closed

lines which encircle the conductor. The total number of

lines passing through the area bounded by a closed electric

circuit is the total magnetic induction of the circuit. As

the current is increased in strength, the intensity of the

magnetic field at every point is increased, and if there is

no magnetic substance in the region, the intensity of the

field is increased in direct proportion to the strength of

current.

A unit current is defined in terms of the intensity of the

magnetic field which it generates. A unit current is that

which, flowing in a circuit of one centimetre radius, acts

on a unit magnetic pole, placed at the centre, with a force

of one dyne per centimetre length of the circumference.

This is a unit of current in the C. G. S. system. Each unit

length of conductor is acted upon by the unit pole, placed

at the centre, with a force of one dyne, which is the same

force as that by which a unit pole would be acted upon
when substituted for a unit length of the conductor at the

same distance. The practical unit of current, the ampere,

is one-tenth of the C. G. S. unit.

NUMBER OF LINES PROPORTIONAL TO CURRENT.

We have seen that when a current flows through a

closed circuit a field is set up consisting of a definite num-
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ber of lines threading the circuit. If there is no magnetic
substance in the vicinity, that is if the permeability of the

surrounding region be constant, the number of lines pro-

duced by a current in a circuit is directly proportional to

the current, and any change in the current produces a pro-

portional change in the number of lines threading the cir-

cuit.

_ dN di a . ,,
This may be expressed N a

.,
and

-^-r
oc -=- . bmce N

varies as
?',
we may say

N=Li,

T
di

(1) and consequently rr = ^
~-ji-

The coefficient L is called the coefficient of self-induction,

and is defined by the equation as the ratio of the total in-

duction threading & circuit to the current producing it.

When the current is unity, the coefficient of self-induction

is equal to the number of lines produced by the current.

If the permeability of the medium surrounding the con-

ductor is constant, this will be the value of L for all values

of the current, and L will be constant. Unless a high degree

of magnetization is reached, L is approximately a constant

for a given circuit, and will hereafter be so considered.

FARADAY'S LAW OF ELECTROMOTIVE FORCE.

When a conductor is moved in a magnetic field so as

to cut lines of force an electromotive force is produced in

the conductor. Faraday showed as the result of his re-

searches that this E. M. F. produced is directly propor-

tional to the rate of cutting the lines of force, and is in a

direction at right angles to the direction of motion and also

to the direction of the lines of force. He further showed

that, if the magnetic induction through any closed circuit

be varied by any means, an E. M. F. is developed in the
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circuit proportional at any instant to the rate of change

(decrease) of the magnetic induction at that instant. In

the C. G. S. system of units this experimental law may be

expressed by the equation

f.
where e denotes the E. M. F. developed and .ZTthe magnetic
induction of the circuit. This means that a C. G. S. unit

E. M. F. is developed when there is a change in the induc-

tion of the circuit at the rate of one line per second. The

negative sign indicates that the E. M. F. is induced in such

a direction as to oppose the change in the number of lines

threading the circuit. The practical unit of E. M. F., the

volt, is 10
8

times the C. G. S. unit just defined.

OHM'S LAW.

An electromotive force impressed upon a closed circuit

causes a current to flow which depends upon the resistance

of the circuit. Ohm first showed, and others have since

verified to a high degree of accuracy, that with a constant

E. M. F., the current is directly proportional to the E. M. F.

and inversely proportional to the resistance of the circuit.

Ohm's law may be expressed

where / denotes current ; E, electromotive force ; and R,

resistance. Since E. M. F. and current are already inde-

pendently defined, the unit of resistance is naturally taken

to be that resistance which allows a unit current to flow

in a circuit having a unit impressed E. M. F. Ohm's law

may then be expressed



CONTAINING RESISTANCE AND SELF INDUCTION. 25

From the relation of the practical units of E. M. F. and

current, the volt and the ampere, to the corresponding

C. G. S. units, it follows that the practical unit of resist-

ance, the ohm, is 109
times the C. G. S. unit.

QUANTITY.

A unit quantity of electricity is said to flow in a circuit

when unit current flows for one second. When a current 1

flows in a circuit for t seconds, a quantity It will flow.

And in a short interval of time dt, a quantity i dt will flow,

which is represented by dq, thus:

dq _ .~~

q representing quantity.

We have seen that for a constant electromotive force, by
Ohm's law the current equals the E. M. F. divided by the

resistance. During a short interval of time dt, any E. M. F.

may be considered constant, and we may write

&

i = -Q, during the time dt.

The capital letters E 7, and Q will be used to denote a

constant electromotive force, current, or charge. When
these are variable^ the small letters e, i, and q will be used.

When a closed conductor is moved from one position to

another in a magnetic field, so as to cause the number of

lines of force included by the circuit to change from one

value N
t
to another value N99 it will be found that the

quantity of electricity which flows in the circuit is always
a definite amount, being equal to the change in the number
of lines -ZV

2
N

19
divided by the resistance of the circuit,

and is entirely independent of the manner of the change,
and of the time occupied in making the change.
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This will be evident when we remember Faraday's law,

dN
e -JT, and consider that the only E. M. F. acting in

the circuit during the motion of the conductor is this

dN
-y

Hence the following relations are true :

dt

dq . e 1 dN
Jj

" ^ ""'
T~>

"

T"> _7 *

etc ./ jK at

(3) Whence Q =
Nl ~

R

N
\

Here $ denotes the sum of all the small quantities, or

the total quantity of electricity flowing through the circuit

during the motion of the conductor, and is seen to be equal

to the change of the induction through the circuit divided

by the resistance of the circuit, as stated above.

The earth inductor is a good example of an instrument

which depends for its use upon the principle just stated.

When a ballistic galvanometer is connected with an earth

inductor, the throw of the galvanometer is proportional to

the total change in the number of lines of force included

by the earth inductor coil as it turns from one position to

another, provided the needle does not start to swing until

the whole quantity of electricity has flowed through the

galvanometer.

JOULE'S LAW.

The fourth and last great experimental law to be men-

tioned is the discovery by Joule that the heat liberated by
a conductor carrying a current of electricity is strictly pro-

portional to the product of the square of the current-strength

and the resistance of the conductor.

Now for the first time we have a means of telling how
much power is required to send a current of any desired

strength through a conductor, and we always expect to find
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some source for the supply of energy when we see a current

flowing through a conductor.

The elementary principles, already given, upon which

the system of electromagnetic units is based, are deduced

from the experimental researches of Coulomb, Faraday, and

Ohm. When a current flows through a conductor there is

always heat liberated in the conductor and accordingly a

dissipation of energy. It therefore requires a certain

amount of power to send a current through a conductor.

The exact amount of this heating effect was first determined

by Joule. The results of his experiments show that the

energy liberated per second in the form of heat in a con-

ductor carrying a current of electricity is strictly propor-

tional to the product of the square of the current-strength

and the resistance of the conductor. Joule's law may be

expressed
W oc P R,

where W represents the energy expended per second.

The energy expended in the time #, during which the

current is constant, is P R t. If the current be a variable

',
it may be considered constant for the time dt, and so in

the time dt

/"

(4) Energy dissipated in heat is dW= i* R dt.

When all the energy given to the circuit is expended in

heat, that is when there is no counter E. M. F. of any kind

and the current is constant, IR may be replaced by E,

according to Ohm's law, and the energy expended in the

time t may be written

WaEIt.

This becomes more definite in the units already dis-

cussed. If a conductor carrying a current 7 be placed at

right angles to the lines of force in a uniform field of
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intensity H, each unit of length will be acted upon with a

force H /. If I be the length of the conductor, the force

will be I H /. When moved with a velocity v against this

force, work will be performed at the rate of I H Iv ergs per

second, or in the time t the work done is

W=l\\Ivt.

This must be equal to the rate at which work is done in

generating a current /, by moving the conductor through
the field. The conductor, when moving with a velocity v,

cuts I H v lines per second, and so produces an E. M. F.

Substituting above, we see that the amount of energy

expended in a circuit is equal to the product of the <Jur-

rent, electromotive force, and time,

W=EIt.

This is seen to be equivalent to Joule's law above and is

equally true for C. G. S. and for practical units. In the

C. G. S. system, energy is measured in ergs and the equa-
tion expresses the fact that energy in ergs is equal to the

product of current, E. M. F., and time in C. G. S. units.

The practical unit of energy is the joule and is so defined

that the equation W= E It, true in ergs and other C. G. S.

units, shall be also true in practical units the joule, the

volt, and the ampere. The equation is then interpreted as

meaning that energy in joules is equal to the product of

current, E. M. F., and time in amperes, volts, and seconds.

From the relation already given between the ampere and

volt and their corresponding C. G. S. units, the joule equals

107
times the C. G. S. unit the erg.

The rate of work is in electrical terms expressed in

watts : one watt equals one joule per second. The common
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English unit of rate of work is the horse-power : one horse-

power equals 745.9 watts.

The rate at which energy is imparted to a circuit multi-

plied by the time is the total energy imparted during that

time. If there is a variable E. M. F., e, from any source

whatever given to a circuit, and a current i flows, the energy

imparted to the circuit in the time dt from the source of

this E. M. F. is the product e i dt. Thus :

(5) Energy imparted to a circuit e i dt.

This enables us to ascertain the energy possessed by a

magnetic field. By Faraday's law, when the magnetic
induction through any closed circuit changes from any
cause whatsoever, there is always an electromotive force

given to the circuit which is equal to

dN_ di

"W~
~

dt

This E. M. F. is due to the existence of the magnetic

field. In creating the field, an equal and opposite E. M. F.,

di
L -r ,

is necessary to drive the current. The work which

this force does is equal to the product of the force, the

current which flows in the circuit, and the time dt
;
as ex-

plained above. The change in the energy possessed by a

magnetic field in the time dt is, therefore,

.dN . _ .di .,

^~J7-dt = Li-j-dt.
dt dt

(6) Energy expended in the magnetic field = L i-,- dt.

The change in the induction through any circuit may
be due to any external cause, as moving magnets, or it may
be due to a change in the current itself. When the change
is due to a change in the current, an increase in the
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strength of the current increases the energy of the

magnetic field; and positive work is done by the current

in creating the field. When the current decreases, the

energy of the field decreases, and negative work is done by
the current on the field

; for, when the current decreases

di
with the time, -?- is negative. To say that the current is

doing negative work is equivalent to saying that the

magnetic field in decreasing is imparting energy to the

circuit. Thus we see that the energy may be stored up in

a magnetic field, and that this is not dissipated, but is

returned to the circuit when the field is diminished in

strength.

To find the expression for the total energy of a mag-
netic field which is due to a current i flowing in a circuit,

we need merely find the sum of all the small quantities of

energy imparted to the field as the current is increased

from zero to its final value /: this is found to be

(7)

THE EQUATION OF ENERGY.

If e represents the impressed E. M. F. given to a circuit

which has a resistance E and a coefficient of self-induction

L, we have seen [equation (5)] that the total energy given

to the circuit from the source is e i dt.

A part of this energy supplied is dissipated in heating

the conductor, and in the time dt is equal to R I* dt [equa-

tion (4)]. A second part is stored up in the magnetic field,

and in the time dt is equal to L i -r- dt [equation (6)]. These

two ways are the only ones in which the energy of the

source is used, under the hypothesis made that the circuit

contains no statical capacity or counter electromotive force
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of any kind other than that due to the field, but only

contains a resistance R and a self-induction L.

By the principle of the conservation of energy we may,

therefore, say that the energy supplied to the circuit is

the sum of the energy dissipated in heat and the energy

expended on the field.

We have, therefore, the equation of energy :

(8) eidt = B?dt+ Li^dt.

When each member of the equation of energy is divided

by i dt, we obtain

(9)

This is an equation of electromotive forces : e is the E. M. F.

of the source impressed upon the circuit, R i the E. M. F.

necessary to overcome the ohmic resistance, and L -,7 the
dt

E. M. F. equal to the E. M. F. of self-induction.

NOTE. The number of lines or the total induction threading a circuit,

when the circuit consists of a coil of several turns, is equal to the number
of lines which pass through the coil as a whole, multiplied by the number
of turns. One line passing through a coil of * turns actually threads the

circuit s times; thus, if 3,000 lines pass through a coil of 50 turns, the total

induction of the circuit is N= 3,000 X 50 = 1 50,000. The explanations oil

p. 23 et seq. and equations (1), (2), and (3) are to be thus understood.

The coefficient of self-induction is defined in terms of the counter-electro-

motive force of self-induction as follows : e L
\ hence, the coefficient

at

of self-induction (or inductance) is the ratio of the counter-electromotive

force of self-induction to the time-rate of change of the current producing
it. The unit of self-induction, the henry, as denned by the International

Electrical Congress, Chicago, 1893, is the self-induction of a circuit when
the electromotive force induced in the circuit is one volt, while the inducing
current varies at the rate of one ampere per second.
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IF a conductor revolves with uniform velocity about

some fixed axis in a uniform field, the rate at which it cuts

the lines of force is different at different parts of the revo-

lution and varies directly as the sine of the angle of rota-

tion. The electromotive force set up in the conductor at

any instant is numerically equal to the rate of cutting lines

at that instant and is accordingly a sine-function of the

angle of rotation and, since the rotation is uniform, a sine-

function of the time. Inasmuch as the assumption of

such an electromotive force often closely approximates to

the truth, and since, as will be shown later, any electro-

motive force whatever may be expressed as a sum of terms

each of which is a sine-function of the time, it has been

found convenient to express electromotive forces in terms

of sines.

In order that sine-functions may be clearly understood

when used in the following chapters, it is considered

advisable to digress and devote the present chapter to the

discussion of harmonic or sine-functions.

32
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If a point moves uniformly around the circumference of

a circle, the motion of the projection of that point upon

any fixed diameter is said to be harmonic. The radius of

the circle is called the amplitude of the motion, and is

designated by a. The time T of making one complete
revolution is called the period. Positive rotation will be

considered as counter-clockwise.

If a uniformly revolving radius of a circle is projected

upon any fixed diameter, its projection is said to vary

harmonically. The maximum value of this projection is

the amplitude, or radius of the circle. This is represented

in Fig. 1. P is a point moving uniformly about the centre

FIG. 1. HARMONIC MOTION.

0, and OP' is the projection of the radius OP upon the

fixed diameter BD. When OP is in the position OA at

right angles to BD, the projection OP' is zero ; and when

OP is in the position OB, the projection OP' has its

maximum value and is equal to the radius OP. The

projection is again zero at OC, and a negative maximum
at OD.
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The angular velocity of the point P is denoted by GO,

and at any point is GO =
-jj.

Since the motion of the point

is uniform, GO=
,
or oot = 0, where is the angle described

t

in the time t. As the time occupied in describing a circum-

ference is T, the uniform velocity GO = -~
; hence = -_-.

The second is taken as the unit of time. The number of

revolutions made by the moving point P, in one second is

^ and is called the periodicity or frequency, often denoted

toy n. The frequency is the reciprocal of the period, i.e.,

n
jp.

It is evident that the angular velocity may be

expressed in terms of the frequency; thus, cw = 2?m, and

therefore, = %nnt.

If we begin to count the time from the point A (Fig. 1),

where the projection of OP' is zero, denoting OP' by y, we

have at any time

y = a sin = a sin GO t,

where a denotes the amplitude and the angle described

in the time t
; y is an harmonic or sine-function of the angle

< or the time t.

Suppose that the time is counted from some point Q,

Fig. 2, other than the point A at which the projection of OP
is zero. There is an angle 0, called the angle of epoch, be-

tween the point from which time is reckoned and the point

,at which the projection of the radius is zero. The time in

which this angle is described is called simply the epoch.

As before, the angle is that described in the time t. The

angle (0 + 0), through which the point P has revolved

from the point A where the projection of OP is zero, is

oalled the angle ofphase or briefly the phase. More strictly
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defined, the phase is the ratio of the arc PA to the circum-

ference of the circle.

If we denote by y the projection of OP upon J5Z>, and

count time from Q,

(10) y = a sin (0 + 0) = a sin (a>t + 6).

When 8 is positive, that is when it is in the positive or

counter-clockwise direction from A, as in Fig. 2, it is often

called the angle of advance. When B is negative, and the

W = asin(wt+0)

FIG. 2. SIMPLE SINE-CURVE.

time is counted from some point Q' at a distance in the

negative or clockwise direction from A, it is often called

the angle of lag. When the angle of phase is zero, OP co-

incides with OA and the projection y = 0. When the

phase is 90, the projection is a maximum, and y = -\- a.

At 180, again, y = ; and at 270, y = a, a maximum in

the negative direction. This cycle is repeated every revo-

lution.

In the equation y = a sin (& t -\- 0),
the amplitude, a,

angular velocity, &?, and angle of epoch, 6, are constants,

and the variable y is said to be expressed as a simple sine-

function of the variable t. The time t is directly propor-
tional to the angular distance passed through. A variable

whose value at any time can be expressed as a constant

multiplied by the sine of an angle changing uniformly with
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the time, is called a simple sine-function, or simple har-

monic function of the time.

In Fig. 2, y is plotted as a sine-function of t. At any

time, t, when the revolving point has the position P, y has

a value OP7
.

Angle of epoch = AOQ = 6.

Time of epoch =
a'q'.

Angle described in time t = QOP = = cot.

Angle of phase = + (angle of epoch) = -f- 0.

Time of phase = t -f- (time of epoch) = t -f- a'q'.

Amplitude = OA = OB = a.

When the term " harmonic function" or " sine-function"

or " sine-curve" is used, such a function or curve as shown

in Fig. 2 is meant.

TO FIND THE AVERAGE VALUE OF THE ORDINATE OF A

SINE-CURVE.

A sine-curve repeats itself symmetrically and the aver-

age ordinate for the whole period is, therefore, algebraically

zero, as it is negative and positive alternately for equal

intervals of time. We can, however, obtain the average
value for one half a period and, since the second half is a

repetition of the first half with sign reversed, this will give

the arithmetical average value for the whole period.

The average ordinate is equal to the sum of all the

vertical elements of area divided by their number, or, what

is the same thing, it is equal to the area included between

the curve and the axis of abscissae, divided by the base.

For half a period the limits are and n, so the

Average Ordinate
/ ydx 1 / ff

= -~^-- = -
/ y dx.



ON HARMONIC FUNCTIONS. 37

But for a sine-curve, y = a sin x
;
therefore

a r* . ap 2a
Average Ordinate = -

/ sin x ax = - cos x=
TTt/o TrL^

n

o
But a is the maximum ordinate, and = .6369; so we

7t

may write

Average Ordinate QQ
(11) srjp ; ~p^ r^ 7~ .Ot5t)7,Maximum Ordinate

which determines the value of the average ordinate.

TO FIND THE VALUE OF THE MEAN SQUARE OF THE ORDINATES

OF A SINE-CURVE.

Although it is often useful to know the value of the

average ordinate of a sine-curve, it is more often desirable

to know the value of the mean square of the ordinates, or

the square root of the mean square. Since the square of

an ordinate is positive irrespective of the sign of the

ordinate, we can find the mean square of the ordinates by

integrating for the whole and not for half a period as was

necessary in finding the average ordinate.

jfV<fc a' /*r
Mean Square of y = -^ =^ / sin

a xdx.

TO a
COS %X miBut sm9 x = Therefore

BG sin vx

-Lo 2~
~

Substituting n for the integral above, we have

a a

(12)
Mean Square of y = x it =

^-.
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The square root of the mean square of the ordinates is,

therefore,

This means that the square root of the mean square of

the instantaneous values of y, which varies harmonically
with the time, is equal to .707 of the maximum ordinate.

The square root of the mean square of the instantaneous

values of a variable current or electromotive force is called

the virtual current or electromotive force and is equal to .707

times the maximum value of the current or electromotive

force.

Inasmuch as the heating and dynamometer effects of

any current depend directly upon its mean square value,

this virtual value is of much more importance than the

average value in the measurement of an alternating current.

PERIODIC FUNCTIONS COMPOSED OF SEVERAL SIMPLE SINE-

FUNCTIONS.

A single-valued function is one which has but one value

at any one point of time, as represented in Fig. 3. A mul-

tiple-valued function is one which

may have more than one value at

one point of time, as represented
in Fig. 4. A periodic function is

one which repeats itself after a
FIG. S.-SINGLE-VALUED definite time or period. If anyFUNCTION.

number of simple sine-functions of

the same period be added, the resultant sum will be a

FIG. 4. MULTIPLE-VALUED FUNCTION.

simple sine-function of the same period. This is rigorously
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shown in Chap. XIV., Part II., for the addition of two

simple sine-functions, as illustrated in Fig. 47
;
and it is evi-

dent that, if true for the addition of two, it is true for the ad-

FIG. 5. ADDITION OP SIMPLE HARMONIC CURVES OP SAME PERIOD.

dition of any number of simple sine-functions. An example

of the addition of two simple sine-functions of the same

FIG. 6. ADDITION OP SIMPLE HARMONIC CURVES OF DIFFERENT PERIOD&
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period is shown in Fig. 5. The resultant curve, represented

by the heavy line, is likewise a sine-curve.

If a number of simple sine-functions of periods which

are different but commensurable, are added together, the

resultant sum is a function which is periodic, but not har-

monic, with a period equal to the least-common-multiple of

the periods of the several component sine-functions. The

two heavy curves in Fig. 6 are obtained by adding two

simple sine-curves of the same amplitude and with periods

in the ratio 1 : 2. The equation for the lower heavy curve is

y = a sin GO t -f- a sin 2 GO t,

the two component curves, shown by dotted lines, being

zero at the start. The upper curve has the equation

y a sin cot -\- a sin
(2

GO t -{- -^

the component dotted curves never being zero at the same

time.

The addition of two sine-curves with different amplitudes

FIG 7. ADDITION OF SIMPLE HARMONIC CURVES OP DIFFERENT PERIODS.

and with periods in the ratio 1 : 3 is illustrated in Figs. 7

and 8. The component curves in Fig. 7 have no phase
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difference at the start and the resultant curve represents
the equation

y = a sin w t b sin 3 GO t.

The curve in Fig. 8 represents the equation

y = a sin GO t -f- b sin (3 oo t -f- 6).

By adding a number of component simple' sine-curves

with different periods and amplitudes, resultant periodic

FIG. 8. ADDITION OF SIMPLE HARMONIC CURVES OF DIFFERENT PERIODS

curves of all manner of forms are obtained. Fourier has

shown that any single-valued periodic curve may be built

up by combining a number of simple sine-curves. Analyt-

ically this means that any single-valued periodic function

may be expressed as the sum of a series of sine-terms
; thus,

y =f(x) = A sin a x -\- B sin 2 a x -\- C sin 3 a x -f- . . . etc.,

+ P cos a x -\- Q cos 2 a x -f- R cos 3 a x + . . . etc.,

where / is a single-valued function. This is true for any

single-valued periodic function, even one represented by
an irregular series of straight lines. Each coefficient Ar

B, Cy etc., is independent of x and has only one value

which Fourier has shown how to find.



CHAPTER III.

CIRCUITS CONTAINING RESISTANCE AND SELF INDUCTION.

CONTENTS: Equations of energy and E. M. F.'s. Criterion of integra-

bility. General solution when e =f(t).

Case I. E. M. F. suddenly Removed. Solution from differential equa-

tion, from general solution. Geometric construction of

logarithmic curve.

Case II. E. M. F. suddenly Introduced. Solution from differential

equation, from general solution.

Case III. Simple Harmonic E. M. F. Solution from general equation.

Impedance. Lag. Effect of exponential term at " make."

Case IV. Any Periodic E. M. F. Sum of two sine-functions. Sum of

any number of sine-functions.

IN the first chapter the equation of energy for a circuit

containing self-induction and resistance was derived, and

from it the equation of electromotive forces

(9) e = Ri+L
<j..,

that is, the electromotive force applied to the circuit is

equal to the sum of the electromotive force necessary to

overcome resistance and the electromotive force necessary

to overcome the counter electromotive force of self-induc-

tion.

This equation of electromotive forces, being regarded

as a differential equation containing three variables e, i,

and i (of which the general type of the first order is

(13) Pdx + Qdy + Sdz = 0,

43
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where P, Q, and 8 are any functions of x, y, and z) does

not satisfy the condition of integrability. That condition,

which must hold true when there exists a single integral

equation of which (13), or a multiple of (13), is the exact

differential,* is

IdQ _dS\ IdS dP\P
(~dz~ dl+ Q \dx~ Jz~)

dP d

If we put (9) in the form of (13), we have

Ode - Ldi + (e
- Hi) dt = 0.

Here e, i, and t correspond to x, y, and z respectively,

and P = 0, Q = - A S = e - Ri.

The criterion of integrability reduces to

- L (1
-

0) = 0, or L = 0,

and is not satisfied.

The meaning of this is that, unless some relation exists

between two or more of the variables, there is no single

equation of which (9) is the exact differential.

We know that the impressed E. M. F., e, has one single

value at any particular point of time, and may therefore be

expressed as a function of the time thus,

(14) e =/(*),

where/is any arbitrary single-valued function.

By equating (14) to (9) the equation (9) of E.M.F.'s is

reduced to a linear equation, having constant coefficients

with the second member equal to '-~-. Thus,

* See Johnson's Differential Equations, p. 270.
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The general type of this equation is

(16)

where P and Q may be functions of x only. The solution

of equation (16), which is a linear differential equation of

the first order,* is

(16a) y = e '/efefp** Qdx + ce ~fpd*.

e denotes the base of the Naperian system of logarithms
and is equal to 2.718. c is the arbitrary constant of in-

tegration. Both of these letters will be thus used when-

ever they occur.

With the particular values of the coefficients in (15) its

solution is, therefore,

Rt . Rt Rt
L

(17) i=^e~
L

fe
L
f(t) dt + ce

This is the general solution for the current flowing in a

circuit containing resistance and self-induction and any

impressed E. M. F.

The integration indicated in (17) can only be performed
when we assume e to be some particular function of t.

We proceed then to assume several ways in which the

E. M. F. varies with the time.

CASE I. DYING AWAY OF CURRENT ON EEMOVAL OF E. M. F.

FROM A CIRCUIT CONTAINING BESISTANCE AND SELF-INDUC-

TION.

Suppose that a current has been flowing in a circuit

until it has reached its steady state, and that the source of

E. M. F. is then suddenly removed while the resistance

* See Johnson's Differential Equations, p. 31.
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and self-induction remain the same. The equation of

electromotive forces (9) becomes, under this hypothesis,

The solution of this equation is readily found since the

variables admit of separation. Thus,

di - R
dt

i
'

L

i Jit

or
Rt

The constant of integration c is determined by the par-

ticular supposition introduced that when we begin to count

the time, the current has its steady value 7. This gives

c = I. Hence we have

Rt

(18)
i = Ie~ L

.

Eeferring to the general solution (17), we might have

written (18) at once. For as/(f) = 0, [see (14),] the integral

vanishes, and we have (18) as an immediate result.

This equation (18) is graphically represented in Fig. 9,

where the ordinates represent the values of the current at

any time after the E. M. F. is removed. The self-induction

of the circuit prevents the current from falling immediately
to zero. It is evident that it would do so if there were no

self-induction from equation (18) ; for, if we make L = 0,

i becomes zero. The current which flows after the removal

of the E. M. F. is called the extra current of self-induction.

The energy required to cause such a current to flow is that

energy which was previously stored up in the field and is

*
Naperian logarithm (base e) is used here and in corresponding cases

which follow.
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now returned to the circuit. When t has the value -^ theM
exponent of e becomes minus unity, and we have the rela-

.02 .04 .06 .08 .10 .20 Seconds

FIG. 9. CURVE SHOWING THE DYING AWAY OP CURRENT AT ANY TIME
AFTER THE REMOVAL OF THE IMPRESSED E. M. F. FROM A CIRCUIT
WHOSE RESISTANCE R is .1 OHM AND COEFFICIENT OF SELF-INDUC-

TION L is .01 HENRY.

tion T = e = 2.71828. -K represents, therefore, the time

that it takes for the current to fall to one eth part, that is to

f it original value. This is sometimes called the

time-constant of the circuit, and denoted by T, that is

-5- = T. The curve represents an exponential function of

the time and approaches the o>axis as an asymptote. This

means that the current becomes smaller and smaller, but

is never zero until an infinite time has elapsed.

GEOMETRICAL METHOD OF CONSTRUCTING THE LOGARITHMIC

CURVE.

The following method shown in Figs. 10 and 11 will be

found to be a convenient way to construct a curve graphi-

cally whose equation is of the form

(19) y = ce- ax
,

where c and a have any real values whatever.
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Lay off OA equal to c. Then OA is the value of y
when x = and may be called

y ; that is, y = c = OA.

Lay off OB equal to c e""* 1
*

Then OB is the value of y

when x = xlt and may be

called y l ;
that is, y l

= c e""* 1

= 05.

Hence -*-' = Z2- =
y, OB

FIG. 10. GRAPHICAL METHOD OF
CONSTRUCTING A LOGARITHMIC

CURVE.

If arcs AA' and BE' are described from the centre 0, and

a line EG drawn parallel with AB', thence another line

CD drawn parallel with AB, and so on, lines parallel

with AB' and with AB being alternately drawn, as in the

figure, then the distances OA, 7)B, OC, , etc., will rep-

resent the values of y respectively as x takes the values

0, x
lt 2a?,, 3xlt etc. For if y , y iy z/ 2 , y3 , etc., denote the

values of y when x takes the values 0, x
iy

%x
i

3x re-

spectively, we have
lt

Hence i = i = etc. = e \
2/3 y.
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From the construction of the figure, and remembering
that OA = y and OB = y, ,

we see *

OA OB OC OD
OB

==
OC

~~~~

OD
etc. =

Hence

OE

yt =OD~, etc.

X-Axis

FIG. 11. LOGARITHMIC CURVE.

Therefore to construct the curve y = ce" ax
. Fig. 11,

we may proceed as follows : Upon two intersecting lines,

as in Fig. 10, lay off the distances y = c, and y 1
= c e

~
"*,

which latter must be calculated, and obtain the values of

OC, OD, etc., as described. Then y , y l9 ya , etc., or OA,

OB, OC, etc., will be the successive ordinates of the loga-

rithmic curve, Fig. 11, at distances 0, xlt 2a?,, Bx lt etc., and

the curve may be drawn.

CASE II. ESTABLISHMENT OF A CURRENT ON INTRODUCTION

OF A CONSTANT ELECTROMOTIVE FORCE INTO A CIRCUIT

CONTAINING EESISTANCE AND SELF-INDUCTION.

Suppose a source of constant E. M. F. is suddenly
introduced into a circuit of resistance R and self-induction

L. The differential equation in this case is

(20)
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where E is a constant. The variables may be separated

here as in the previous case, thus :

di E ,

,
II. E\ Rt

and l

E -

Therefore i = -- ce L

The constant of integration, c, is determined by the

TfJ

condition that, when t = 0, i = 0, and therefore c = -Ĥ
We have then as a result,

(2D * =

Eeferring to the general solution (17) we might have

substitutedf(t) = E, a constant, and written at once equa-
tion (21). For in this case we easily find the required

integral :

m r Rt
L
dt = E~e~r.

1 --
Multiplying this by the coefficient e L

(17) becomes

Eeplacing c by -5, we have

,, . , ,. , .,, /01Xa result identical with (21).
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\

Here we notice that, if the self-induction is zero, the

equation becomes simply Ohm's law
; that is, it is the

self-induction of the circuit which prevents the current

from reaching its full value immediately after the intro-

duction of the E. M. F.

.02 M .06 .08 Seconds

FIG. 12. CURVE SHOWING THE ESTABLISHMENT OF CURRENT AT ANY
TIME AFTER THE INTRODUCTION OF AN E. M. F. INTO A CIRCUIT
WHOSE RESISTANCE R is .1 OHM AND COEFFICIENT OF SELF-INDUC-

TION L is .01 HENRY.

The increase of the current with the time is shown by
the curve Fig. 12. This is a logarithmic curve similar to

that in Fig. 9, with the ordinates measured downward from

the horizontal line O'A, at a distance above the axis equal

to the maximum value /, of the current.

CASE III. HARMONIC IMPRESSED E. M. F. IN A CIRCUIT

CONTAINING A RESISTANCE AND SELF-INDUCTION.

Let us now suppose that in a circuit containing re-

sistance and self-induction there is a simple harmonic

impressed E. M. F., that is that the E. M. F. is a sine-func-

tion of the time, thus :

(22) e =/() = Esin Got.

Here .Z^is the amplitude or maximum value of the im-

pressed E. M. F., and GO is the angular velocity, equivalent
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to 2?, or
-^-,

where n denotes the number of complete

periods per second, and T the time of one complete period.

The general solution for the current, equation (17), is

-. _Rt Rt Rt

(17) i=e~

Substituting in (17) the value for f(t) in (22), the general

expression becomes, according to the particular hypothesis

of a sine E. M. F.,

(23) i = ~e~^ /Y^sin vtdt + ce~^~.L J

Before integrating this equation we will first obtain the

general integrals

fe
ax

sin (/3x+V)dx and fe
ax

cos (ftx + 0) dx.

Applying the formula for integrating by parts,

/ u dv = u v Iv du,

these integrals become

ax Q f= sin (/to + 0).
-- -J e** cos (fix + 0) dx,

e
ax

ft r
x + V).

--
1- -J e** sin (ftx + 0) dx,

Eliminating / e*
1^

cos (fix -f- 6) dx between these two equa-

tions, we obtain as one of the integrals sought

(24) fe** sin (ftx + 0) dx

sn fx + " cos
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Eliminating / e"* sin (fix -\- &)dx between the same two

equations, we obtain in the same way the integral

(25) fe** cos (/3x + 6) dx

Replacing a by -j-,
ft by GJ, 6 by 0, and x by t, in equa-

tion (24), we have the integration indicated in (23), and

equation (23) then becomes

TjJ / 7? \

(26) i =
jjp
--

r
\-jp

sin cat oacos GO
tj
+

"

c e

This may be written in simpler form by the use of the

trigonometric formula

(27) A sin 6+ B cos 6 = VA* + J5
a
sin

(0+ tan
- J

^V

This formula is established as follows :

A sin 8+ B cos

T> ft A

If tan = -
( then sin = -

7
==, and cos =

Making these substitutions, we have

A sin + 5 cos = VA*+ g* (cos sin + sin cos 0)

which establishes the truth of (27).



RESISTANCE AND SELF INDUCTION. 58

Keducing equation (26) to its simplest form by means

of formula (27), we have from (26) the value of the current

at any instant of time.

/
j

v . R

== sin (cot tan" 1

-^) +ce
L

.
a

/~-1
2 > -Li I

DISCUSSION OF THE CURRENT EQUATION.

After a very short time the exponential term in this

equation, containing the arbitrary constant of integration,

becomes inappreciably small, and may be neglected. Just

what effect the.exponential term has during this short time

will be considered later. The equation shows that, where

there is an impressed sine electromotive force in a circuit,

the current is likewise a sine-function of the time, and that

the current lags behind the electromotive force by an angle

L GJ

whose tangent is --. If there is no self-induction and

L = 0, equation (28) becomes

E ,

l =
~ft

sin GO
t,

which is a direct result of Ohm's law. Thus the self-

induction not only causes the current to lag behind the

impressed E. M. F., but also diminishes the maximum
value of the current.

When sin ( GJ t tan
" !

-^-
J

becomes unity, the current

has its maximum value /, and

The term "impedance
"
has been applied to the expression

4/7T -f- U G0
2

, the apparent resistance of a circuit contain-

ing ohmic resistance and self-induction, and an impressed
sine electromotive force.



CIRCUITS CONTAINING

(30)

The equation (29) may be written

Maximum E. M. F.
Maximum current =

Impedance

Since virtual current -=- maximum current, and vir-

tual E. M. F. = - maximum E. M. F., see equation (12),

we may write

(31) Virtual current =
Virtual E.M.F.

Impedance

Ohmic Resistance

FIG. 13. VALUE OF IMPEDANCE.

The value of impedance is graphically represented in

Fig. 13. L GJ is sometimes called the inductive resistance in

contradistinction to the ohmic resistance R. (See note p. 59.)

It has been shown above that the tangent of the angle

of lag is
ft-*

The angle of lag is therefore represented

by in Fig. 13.

Lffli

Rl

FIG. 14. VALUE OF IMPRESSED E. M. F.

The triangle may be drawn so that the three sides rep-

resent E. M. F. as in Fig. 14. Here R I represents the
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E. M. F. necessary to overcome the ohmic resistance, and

is in the same direction as the current. L GO I is at right

angles to this and represents the counter E. M. F. of self-

induction. / VR* + L3
&?

2
is the impressed electromotive

force E. is the angle by which the current lags behind

the impressed E. M. F.

Full discussion of the triangles of current and E. M. F.

is given in the graphical treatment of circuits with re-

sistance and self-induction, Chap. XV.
It is convenient to consider the impedance as a resist-

ance, and the propriety of doing so is shown by its dimen-

sions, which are the same as those of resistance, that is a

velocity in the electromagnetic system of units.

The dimensions of resistance, R* are . = velocity.
time

The dimension of the coefficient of self-induction, Z, is

Imgth. The dimension of an angular velocity GO is . .

Therefore the dimensions of L GO are -r^- = velocity, and
time

thus the impedance has the same dimensions as a resistance.

EXPLANATION OF THE EXPONENTIAL TEBM.

Let us return to the solution for current, equation (28),

_**
and consider the effect of the exponential term, c e L

t

during the short time after "
make," that is, after the intro-

duction into the circuit of a simple harmonic impressed
electromotive force. The equation (28) for current may be

written

_Rt
(32) t = 7sin0 + c6

;

where / =

and
i/}
= GO t tan -=-

;
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that is, / represents the maximum value and ^ the phase of

the current. The E. M. F. is introduced at a time t
t
. At

that time the current is zero, for the circuit is just made.

If we call
if> 1

the value of ^ when t = t
1 , at the introduction

of the E. M. F. equation (32) becomes

(83)

= /sin

and c = le
Rt,

Rt,

c e L

sn

Substituting this value of c in (32), the equation for cur-

rent becomes

(34) I e
~~

( *

FIG. 15. CURVE SHOWING THE EFFECT OF THE EXPONENTIAL TERM

c
L
UPON THE CURRENT AT THE MAKE, IN A CIRCUIT WHERE

L = 1 HENRY, R = 50 OHMS, GO = 1000, ^ = 30.

This equation may best be explained by referring to

Fig. 15, which represents the plot of the equation. The par-

ticular values assumed in this case are L = 1 henry, R = 50

ohms, &) = 1000, and ifr l
= 30. The resultant current curve

III. is made up of two component parts, I sin
i/j,

and

~
L l

sin
tf.\ ,

which are represented by the curves
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I. and II. respectively. Curve I. is a sine-curve and curve

II. a logarithmic curve, the effect of which upon the result-

ant current becomes inappreciable after a very short space
of time, in this particular case after five or ten periods.

The initial value of this logarithmic curve is equal and op-

posite to the value of the ordinate of the component sine-

curve I. at the time t, when the E. M. F. is introduced.

This is evident from the equation, since the initial value of

the logarithmic curve is / sin ip l ,
and the value of the

sine-curve, when t = i
l ,

is -\- I sin ^ 1
.

If another curve IV. is constructed so that its ordinates

represent the initial values of the logarithmic curve, when
the E. M. F. is introduced at different points in the period,

it is seen to be simply a sine-curve, corresponding with the

component curve I. but reversed, or, what is the same

thing, differing from it by 180 in phase.

To conclude, we see that the effect of the exponential

term in the equation is a maximum if the E. M. F. is intro-

duced at that point of its phase at which the current has

its maximum value when everything has reached its per-

manent state
;

this term has no effect if the E. M. F. is

introduced at that point of its phase at which the current

has its zero value when everything has reached its per-
manent state.

CASE IV. PERIODIC E. M. F. WHICH is NOT HARMONIC, IN

CIRCUITS CONTAINING EESISTANCE AND SELF-INDUCTION.

In Case III. the solution was given for a circuit contain-

ing an impressed E. M. F. which was a simple sine-function

of the time. Now let us suppose that the E. M. F. does

not follow a simple sine law, but that it is the sum of two

components each following a sine law, that is,

(35) e = E
l
sin GO t + E, sin (b GO t + 0).
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Substituting in the general expression for current (17)

this value for/ (t),
we have

_ Rt R

(36) =="

_R_l Rt
L L

Performing the indicated integrations by use of the

formula of integration (24), we have

J? ( 7? 1

(37)

' =
jW' ~\ { L

sin "" - cos "'
I

1

X
ll^ + <B

J

7?

H--

_Rt
C L.

Simplifying by formula (27) this becomes

(38) '

+ -- - sin (6 ^< + 6 -
Z'^G?8

Rt

ce

By this equation it is seen that each simple sine impressed
E. M. F. gives rise to a simple sine term in the resulting

current equation. The result may therefore easily be

extended, and we may say that, if there are n simple sine

impressed E. M. F.'s of the form E sin (b GO t + #), where



RESISTANCE AND SELF INDUCTION. 59

E, b, and have different values in each component term,

the current equation will be the sum of n terms of the form

E (
T -iLbco)- sin

-j

b oo t -f-
6 tan R I

R_

plus the term c e L containing the arbitrary constant.

Here Ey b, and have the same values in each term as

they do in the corresponding term of the impressed E. M. F-

Expressing the current by a summation, we have

_R_t

+ C L

when the impressed
E.M.Fis

tf
, 6, 9.

In these sums E, />, and # may have n values, but they
must be the same values in each sum, giving rise to the

same number of terms in each.

It was first shown by Fourier that such a sum of simple
sine terms as that represented in equation (39) may express

any single-valued function whatever, and thus we see that

the equation expresses the most general case of a current

flowing in a circuit with resistance and self-induction, and

may represent the current caused by any E. M. F. what-

soever.

The consideration of this most general expression for

the current will be deferred until the case has been taken

up where the circuit not only contains resistance and self-

induction, but also a condenser.

NOTE. Since the first publication of this volume the quantity Loa has

been termed reactance, and L oa I the reactive electromotiveforce. The com-

ponent electromotive force in phase with the current may be termed the

power electromotive force. The ohmic electromotive force fills a power
electromotive force.



CHAPTER IV.

INTRODUCTORY TO CIRCUITS CONTAINING RESISTANCE
AND CAPACITY.

CONTENTS: Plan to be followed. Charge. Law of force. Unit charge.

Work in moving a charge. Potential. Capacity. Energy of charge.

Condenser, energy of and capacity of. Capacity of parallel plates;

of continuous conductor. Equation of energy, in terms of *
;
in terms

of q. Equation of E. M. F.'s.

IN the first chapter the fundamental principles neces-

sary to lead up to the derivation of the equation of energy
for circuits containing resistance and self-induction only

were given ; then followed, in the third chapter, the solu-

tion of this differential equation, which enabled us to ascer-

tain the current flowing in the circuit at any time. Follow-

ing a similar plan, there will be given in this chapter the

necessary fundamental principles which lead up to the

derivation of the differential equation of energy for circuits

containing resistance and capacity, and in the following

chapter the general solution of this differential equation
and its application to various particular cases.

LAW OF FORCE.

Every one is familiar with the fact that bodies may be

charged with electricity, and that two like charges repel

and two unlike charges attract one another. It was found

from experiment by Coulomb that if we have two charges,

each concentrated at a point, the force of attraction or
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repulsion between them varies directly with the product of

the two charges and inversely as the square of the distance

between the two points, that is,

where q and q' represent the quantities of the charges, r the

distance, andF the force between them. When the quantities

considered have the same sign, the product q q' is positive,

and therefore a force of repulsion has a positive sign,

Similarly a force of attraction has a negative sign.

If the distance between these points is unity, the

charges being equal, and if the force between them is a

unit force, each charge is called a unit charge. The defini-

tion of the electrostatic unit of quantity of electricity, in

the C. G. S. system, is then : that quantity which, when

placed at a distance of one centimeter from an equal quan-

tity (in a medium whose specific inductive capacity is unity

that is, in air or vacuo), repels it with the force of one

dyne. Where these units are used, and the medium is

a vacuum, the law of force may be written

F-l
r*

Where the medium is not a vacuum, the force is found to

be less and equal to

where K is a constant quantity called the specific inductive

capacity of the medium.

POTENTIAL.

Since there exists a force between two charges of elec

tricity, mechanical work is done if either is moved so as to

change the distance between them. The work done iu
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moving any body against a uniform force is equal to the

product of the force and the distance through which the

body is moved against that force. The force between the

electrical charges q and q' is ^-. If they be moved in any

direction whatsoever, so that the distance r between them
is changed to r+ dr, the work done in moving them is the

product of the force ^-~- and the change in the distance dr,

since the force may be considered constant throughout the

small distance dr. . Therefore the work is

dw=
r

FIG. 16. WORK DONE IN MOVING A CHARGED BODY.

Suppose a charge q is situated at the point A (Fig. 16),

and a charge q' is moved from the point P l
to P2 . The

work done by the electric force in moving the charge is

or, the work done against the electric force \sqq'\
--

j.

It is seen that the work done in moving a charge from

one point to another is independent of the path by which it

is moved, and simply depends on the initial and final dis-

tances between the charge q and q
r

. If the distance r
l
is

infinite (meaning that the charge q' is carried from an in-
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finite distance to a point at a distance r
2), the work done

aarainst the electric force becomes simply

If q' is unity and a unit charge is moved, the work becomes

It is seen that each point in the region surrounding an

electric charge possesses a certain characteristic which

determines the amount of work done in bringing a charge
from infinity to that point. This characteristic of the

point has been called its potential. The potential V at a

point is therefore defined as the work done in moving a

unit positive charge from an infinite distance to that point ;

thus, V= . This potential is positive when the work

is positive, that is, when work is done, in moving the

charge, by some agent external to the system.

The potential at a point due to a number of charges,

each concentrated at a point, is the sum of the potentials

at that point due to each charge independently ; thus,

If there is a charge distributed upon any surface and

dq is the charge upon an element of that surface, the poten-

tial at any point due to this charged surface is equal to the

sum of the potentials due to each elemental charge ; that is,

fdq~~ J *

The potential at every point of a good conductor is the

same, since the electricity will so distribute itself on

the body that no work would be done by transferring a
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charge from one point of the conductor to anothe* point of

it. This potential Fis called the potential at the conductor,

and the conductor is said to be at potential V. The poten-
tial at a conductor may be due partly or wholly to the

charge on the conductor itself.

CAPACITY OF A CONDUCTOR.

The potential of a charged body is directly proportional

to its charge, that is, V a q, or q = C V, where C is some

constant; for, suppose the body possesses a unit charge
and its potential is F; a second unit charge brought from

infinity to the body doubles its original charge. The po-
tential is then 2 F, for the potential is the work done in

bringing a unit charge from infinity to the point, and the

work in bringing a unit charge to a body with a quantity

2g is twice the work in bringing a unit charge to a body
with a quantity q. We thus see that q is proportional to

F, and is consequently equal to V multiplied by some con-

stant, that is,

(41) q=CV.

If a body is charged to a unit potential and the quan-

tity is
(7,

q=C.

C is therefore defined as the quantity of electricity upon
a body when at a unit potential. This is called the capacity

of the conductor. The capacity depends upon the size and

geometrical form of the conductor and the specific inductive

capacity of the surrounding medium.

ENERGY OF A CHARGED CONDUCTOR.

Suppose a body is charged with a quantity of electricity

cr, and is at a potential V. The work done in bringing a

unit quantity of electricity from an infinite distance up to

the body is Fby definition. (This is provided q is so large
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in comparison with a unit quantity that its potential is not

appreciably altered by the addition of the unit quantity.)

If, under the same conditions, we bring up, not a unit

quantity, but a quantity dq, the work done is Vdq, and this

represents the increment of the energy of the charge q.

That is,

(42) dW= Vdq.

Referring to equation (41), we may always replace V by

its equal -Q,
or dq by its equal CdV, and obtain the equa-

tions

and

dW= CVdV.

The integrals of these equations, taken between the

limits zero and q, and zero and V, respectively, are

w lq*

*

Since q = C F, each of these equations may be written

(43) W=\qV.
Here JFis the potential energy possessed by the charged

body, as the limits of integration were taken from zero

charge to charge q, and from zero potential to potential V.

CAPACITY AND ENERGY OF A CONDENSER.

A condenser is a device for increasing the capacity of a

conductor by bringing it near another similar conductor,

which is separated from it by any non-conducting medium
or dielectric. This dielectric will be considered to be a
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perfect non-conductor ;
that is, the condenser is not leaky.

A condenser usually consists of two sets of parallel plates

alternately connected, and separated by a distance very

small as compared with the dimensions of the plates. The

two sets of plates are usually called simply the two plates

of the condenser. When the condenser is charged, the two

plates have equal quantities of electricity upon them, but

of the opposite sign.

The total energy of a charged condenser may readily be

found by taking the algebraic sum of the energies of the

charge on each plate, as given by the equation (43).

If the plates of a condenser have charges -f- q and q

at potentials V
l
and F

2 , respectively, the total energy is

that is, the energy of a charged condenser is equal to one-

half the product of the charge of one of the plates and the

difference of potential between the plates. If this differ-

ence of potential between the plates is simply J
7

, the ex-

pression for the energy of a charged condenser is

(45)

The capacity G of a condenser is the quantity of elec-

tricity on one plate when there is a unit difference of poten-

tial between the plates ; and when there is a difference of

potential Fthe charge is

<46) q = C 7.

It can be shown that the capacity of a condenser, com-

posed of parallel plates of equal area, whose distance apart

is small as compared with the dimensions of the plates, is

directly proportional to the area of the plates, and inversely
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proportional to the distance between them, and that the

capacity is

(47) C =
j j

, [See note, p. 69.]

where A is the area of each plate and d the distance be-

tween the plates.

As the plates of a condenser approach nearer and nearer

together, the capacity C becomes larger and larger. In the

limit, when the plates come into contact, the capacity be-

comes infinite, which means that, no matter how much one

plate is charged, there can exist no difference of potential

between them. If, then, a circuit is a continuous con-

ductor and has no condenser in it, it may be said to have

a condenser of infinite capacity in series with it.

By combining equations (45) and (46) the energy of the

charge of the condenser may be expressed in terms of the

capacity and the potential F, or in terms of the capacity

and the charge q. Thus,

The increment of the energy d W, as the potential and

charge vary simultaneously, is

jitr sijrijr_9 dy
(49) C

THE EQUATION OF ENERGY.

We can now write the equation of energy for an electric

circuit having a resistance E, and having in series with

that resistance a condenser of capacity C.

The total energy given to the circuit by the source of

E. M. F. is eidtj and that part of the energy used in heat-

ing the conductor in the time dt is R i* dt, as shown in

equations (5) and (4). The amount of energy required in

dW
the time dt to change the charge of the condenser is - dt.
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Since, under the conditions supposed, these two are the

only ways in which the energy imparted by the source is

used, we have the equation of energy,

dW
(50) eidt = i*dt + -

J
-dt.

We have seen that dW= ? (equation 49) ; therefore,

yfy j*
(51)

When a current i flows into a condenser for a time dt,

the quantity which flows during this time is i dt, but this

is the increment dg of the charge of the condenser, that is,

dq = i dt ;

hence

(52) q = fidt.

Substituting these values of q and i in equation (51) we

may write the equation of energy in two forms, in terms of

i or in terms of q, thus :

idt fidt
(53) eidt = R?dt r\ ^_

J

<w 4* =*(

Dividing (53) through by idt and (54) by its equal dq,

we have

fidt
(55) e=rJ?i+^-;

(56)
e = R t+-C'
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These are equations of electromotive forces, where e is

dq
the impressed E. M. F. of the source, Mi or R^ the

E. M. F. necessary to overcome the ohmic resistance, and

fidt g
-77 = 77 V, the E. M. F. necessary to oppose the
o o

E. M. F. of the condenser.

When C is infinite, that is, as explained above, when the

plates of the condenser come into contact, we have a circuit

with resistance only, in which case equation (55) gives

which is Ohm's law.

NOTE. This expression for capacity, equation (47) (page 67), is true for

C. G. S. electrostatic units. To find the value in electromagnetic or prac-

tical units, consult Appendix A, page 312.
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CIRCUITS CONTAINING RESISTANCE AND CAPACITY.

CONTENTS. Equation of E. M. F.'s. Differential equation in linear form.

Criterion of integrability. General solution when e = f (t).
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Case III. Simple harmonic E. M. F. Quantity and current from general

solution. Discussion.

Case IV. Any periodic E. M. F.

IN the previous chapter the equation of energy for

a circuit containing ohmic resistance and capacity was

derived, and, by dividing the equation of energy through

by i dt or dq, it was found that the equation of electro-

motive forces thus obtained may be expressed in terms of

current, i, or charge, q, thus :

(55) e = Ri+f
{

-%.

(56) -4j+f
Differentiating (55), to free it from the integral sign,

and transposing, the two equations may be written :

(57) Cde--R Cdi -idt = 0.

(58) Ode- B Cdq + (eC-g)dt = 0.

70
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Each of these equations is a differential equation of the

first order with three variables, e, i, and t, and e, q, and t,

respectively, of the form

Pdx+Qdy+Sdz = 0.

If there exists a single integral equation of which this

is the exact differential, the condition of integrability
*

dQ dS d8 d dP _' --
must be satisfied.

Applying this criterion of integrability to the equations

R

AA/VW-1

PIG. 17. CIRCUIT HAVING OHMIC RESISTANCE AND CAPACITY.

(57) and (58), it is found that the condition is not satisfied

by either equation. No single equation exists, therefore,

of which (57) or (58) is an exact differential.

But, as was previously stated, we know that the electro-

motive force e may always be expressed as a single-valued

function of the time, since it must have some one value at

each point of time, and we have

(59) =/(<).

where / is an arbitrary single-valued function. By differ-

entiation (59) becomes

(60) g=/'(0-

* See Johnson's Differential Equations, p. 270.



72 CIRCUITS CONTAINING

Equations (57) and (58) may now be written in the linear

form thus :

(63)

The solutions of these linear equations
* are

t_

n
_

fc I /s C/ /./ / . x 7 . . .B C7el +R(
~~w~J e

f-
i i T> ft R. C9

The integrals here expressed cannot be found unless we

know in what particular way the electromotive force varies

with the time. When we know this, these equations will

give the values of the current and charge at any time,

provided the integral sought can be obtained. We will

now assume several ways in which the E. M. F. varies

with the time, which will allow the integration to be easily

performed.

CASE I. DISCHARGE OF A CONDENSER.

Suppose that a constant source of E. M. F., E, has been

acting upon a circuit containing in series a resistance, and

a condenser with capacity C, until everything has reached

its steady state. No current will be flowing, and the con-

denser will be charged with a quantity Q, and have a dif-

ference of potential E at its terminals. Now suddenly
remove the source of E. M. F. from the circuit and suppose
its resistance then is R. The condenser will immediately

* See Johnston's Differential Equations, p. 31.
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begin to discharge through the conductor, and we wish to

find the value of the charge q and current i at any time

after the discharge begins.

When the E. M. F. was removed from the circuit the

impressed E. M. F., e f(t), became equal to zero at every

point of time after the removal
; hence, substituting

165) e =/(*) =

in the general equations (63) and (64), we find that the in-

tegral vanishes, and we have the immediate results,

i = Cl e~^.

? =c,rA
The arbitrary constants c, and c

a
are determined by the

initial conditions. If the charge is Q when the time is

zero, the charge equation becomes

t

(66) q=Qe~ lra
;

and since dq = i dt, the current equation becomes

(67)

' =-
"

If, instead of substituting e =f(t) = in the general
solutions (63) and (64), we had substituted in the differ-

ential equations (61) and (62), it is seen that the second

member of each becomes zero, and that the solutions are

merely the "
complementary functions," namely, the terms

in the general solutions containing the arbitrary constants,

as pointed out.

It may be of interest to derive the solution directly from

the differential equations, since the variables easily admit

of separation.
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Equation (62), when/(Q = 0, is

dq
dt

= 0.

dg

9
Hence =

and

or

dt

EC*
t

t

RC
q = ce

which is identical with (67).

In Fig. 18 is shown a curve of discharge of a condenser

for a particular case. The rapidity of discharge is shown

by the value of the time-constant T, which gives the time

in which the charge of the condenser is reduced to one eth

of its initial value.

T = E G = 100 X 109 X 4 x 10' 15 = .0004 seconds.

.0008

Sec'onds .002

FIG. 18. CURVE SHOWING DISCHARGE OP A CONDENSER WHOSE CA-

PACITY C = 4 MICROFARADS, THROUGH A RESISTANCE R = 100 OHMS.

CASE II. CHARGE OF A CONDENSER.

Suppose that a constant source of E. M. F., E, is sud-

denly introduced into a circuit, and that the resistance

when it is introduced is R, the capacity of the condenser

in series with the resistance being C. The values of the
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current i and charge q at any time after the introduction

of the E. M. F. will be given by equations (63) and (64) if

we suppose

(68) e f(t) = E, a constant,

de
and consequently -r =f'(t) = 0.

Substituting these values, (63) and (64) become

t

(69) t =0,6
R0

.

t

(70) g= CE+ c,e~
RC

.

Determining the constants of integration c, and c
a by the

condition that there was no charge in the condenser when

t = 0, we have

But since CE= Q, the final charge of the condenser when

everything has reached its steady state, (70) becomes

(71) ?=0(l-Y" BO
),

and by the relation dq = idt equation (69) becomes

j

(72) i =^e~.
It is noticeable that the equations for the current (67)

and (72) are identical in the case of charge and discharge

of a condenser, except that the sign of i, i.e., the direction

of the current, is reversed.

Equation (71) may easily be derived from the differ-

ential equation (62) directly, upon substituting/^) = E,

as the variables easily admit of separation ; thus,

~dt
Jr ~RC

=
~R
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may be written
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dq dt

and log

q- GE

(q
- CE) t

Hence g=CE-}-c9 e

t

RC

which is identical with (70).

The curve representing the charge of a condenser is

shown in Fig. 19. The time-constant R C = .0004 The

final charge is

Q = C V= 4 X 10-
15 X 200 X 10

8 X 10 = .0008 coulombs.

.0008

.OOL Seconds .002

FIG. 19. CURVE SHOWING THE CHARGE OF A CONDENSER WHOSE CA-

PACITY (7=4 MICROFARADS WHEN SUBJECTED TO A DIFFERENCE OF

POTENTIAL OF 200 VOLTS THROUGH A RESISTANCE OF 100 OHMS.

The curve of discharge for the same condenser under

the same conditions was given in Fig. 18.

CASE III. ELECTROMOTIVE FORCE A SIMPLE HARMONIC

FUNCTION OF THE TIME.

Let us now suppose the impressed E. M. F. to be a

simple harmonic function of the time, as in Case III., Chap.
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III., in the discussion of circuits containing resistance and

self-induction
;
that is,

(73) =/(0 = Ea*n cot,

where E is the amplitude, or maximum value of the

E. M. F., and GO the angular velocity. By differentiation,

~=f'(t) = EGOCOS cot.

Substituting these valuos in the general equations (63) and

(64), we obtain

_
RC

F _1_ / |

t JL

=Ji e RCJ e * c sin ttdt + c, e RC

(74)

(75)

These integrals may be found by the formulae of reduc-

tion, obtained by integrating by parts, given in equations

(25) and (24).

Applying these formulae of reduction to equations (74)

and (75), they become

/nra r-r 73 / -i \ t

(76) ^ = ..'"sin (a<+cosarf+ C,e"
j

(77) q = 8in K)t ~ > cos

These equations (76) and (77) may be simplified by the

trigonometric formula

(27) A sin + B cos = VA* + & sin] + tan'
1

^- i.
-

;
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By the application of this formula to (76) and (77) we
have the complete solutions of the differential equations,

namely,

(78) i=

and

E -
*-/ * ,, . ^. .^^ v ~R C*

The last equation is equivalent to

(79) ?W

These equations (78) and (79) are the complete solutions,

expressed in their simplest forms. It will be noticed that

the differential of (79) is (78), according to the relation dg
= i dt. It was not necessary to carry both equations

through together, as one may be directly derived from the

other by integration or differentiation. It is thought it

may add interest to the case if we have the two to compare,
so that any differences that exist become more apparent.

After a very short time the last term of each of these

equations, containing the arbitrary constant of integration,

becomes inappreciably small and may be neglected. Then

it is seen that the current and charge are both harmonic

functions of the time ;
but the current, instead of lagging

behind the impressed E. M. F., as it did in the case where

there was self-induction in the circuit, advances ahead of it

by an angle whose tangent is *
^.

When the capacity

C is infinite (and there is no condenser in the circuit, as ex-
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plained on page 67) the tangent ~ is zero, and the cur-

rent is in phase with the E. M. F. When the condenser

alone is in circuit, so that the resistance is negligible,

7^-n becomes very large and the angle of advance is
JLl GO

nearly 90. 77 has been termed the reactance-
COD

The equation of the current then becomes

(80) i = CE GJ sin (GO t + 90),

tk/
and of charge

(81) q = - Q cos (at+ 90);

and the charge will always be a maximum when the current

is zero and vice versa, as the cosine is a maximum when the

sine is zero.

When the sin ! cot + tan"
1

p
[
becomes unity the

current has its maximum value /, and

(82)

The radical A /R* -\ ^
- is the apparent resistance of

V (7
a
6?

a

the circuit ; and, upon comparing with equation (29), we

see that it corresponds to the radical ^ R* -|- j? G?
a

,
which

has been called the "
impedance" of the circuit, in the case

where there is self-induction and resistance only.

CASE IV. ANY PERIODIC ELECTROMOTIVE FORCE WHICH is

NOT HARMONIC.

If the impressed electromotive force is any periodic

function whatsoever of the time, then as was mentioned
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in the discussion of circuits containing self-induction this

E. M. F. may be expressed, according to a theorem due to

Fourier, as the sum of terms of the form

E$m(bcot-\- 0).

Thus,

(83) e

E, b, 0.

may represent any electromotive force whatsoever, where

E, b, and Q have n different values corresponding to^ terms

of the sum. As was previously shown in the case of self-

induction, each term of the E. M. F. impressed gives rise

to a corresponding term in the resultant current equation
of the form

E

where E, b, and have values equal to their values in the

corresponding term of the E. M. F. equation.

The expression for current, then, when (83) is the im-

pressed E. M. F., is

C'Vco*

This gives the general solution for the current in a

simple circuit containing resistance and capacity, and any

impressed E. M. F. The discussion of this general solution

will be deferred until circuits containing resistance, self-

induction, and capacity have been considered.



CHAPTER VI.

/

CIRCUITS CONTAINING RESISTANCE, SELF INDUCTION,
AND CAPACITY. GENERAL SOLUTION.

CONTENTS. Equation of energy in terms of e, i, and t
;
in terms of e, q, and

t. Equation of E. M. F.'s in terms of e, i, and t
;
in terms of e, q, and t.

Equations transformed for solving in terms of i and t
;

in terms of

q and t. Complete solution for * in terms of t
; complete solution for q

in terms of t. Four cases will be considered: I. e =f(t) = 0; II.

e = f(t) = E\ III. e =f(t) = Esin aot; IV. e =f(t) = 2Esin (b GO t + 0).

IN the preceding chapters the formation of the differ-

ential equations for circuits containing resistance and self-

induction alone, and resistance and capacity alone, has been

discussed, and the solution of these differential equations
obtained and discussed for these two particular cases. It

is now proposed to consider a circuit containing all three,

resistance, self-induction, and capacity, in series, and in the

present chapter to derive from the differential equations
two general solutions which express, respectively, the cur-

rent flowing in the circuit and the charge of electricity in

the condenser, at any moment, when the circuit is sub-

jected to any impressed electromotive force whatsoever.

The succeeding five chapters of Part I will then be devoted

to a discussion of these general equations, now to be ob-

tained, and their application to various particular cases of

impressed electromotive forces.

The differential equation of energy for a circuit contain-

ing all three, resistance, self-induction, and capacity, may
81
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be written at once, since we have already derived expres-

sions which represent the energy used in heating the

conductor [see equation (4)], in creating the magnetic field

around the conductor [see equation (6)], and in charging
the condenser [see equation (53)].

The equation of energy is

, . idt fid t
CL *L J

The first member of this differential equation eidt

represents the total energy supplied to the circuit in the

time dt. A part of this energy represented by Ri* dt is

used in heating the conductor. A second part L i -7-. d t is

expended in creating a magnetic field in the space sur-

rounding the conductor. A third part, represented by

id tj id t

-^ ,
is expended in charging the condenser. Equa-

_ C

tion (85) is the general differential equation of energy, in

terms of the current which flows in the circuit, the E. M. F.

which drives the current, and the time, for a circuit con-

taining resistance, self-induction, and capacity in series.

This equation of energy may be expressed as a differen-

tial equation in terms of the quantity of electricity in the con-

denser, that is, the charge of the condenser, the E. M. F., and

the time, by means of the relation dq = idt, org= fidt.

On substituting in (85) i = -TT-, we have

(86) dt (dt ) dt* dt ' C

Each term in this equation is equal to the correspond-

ing term in equation (85), since it is obtained by direct
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substitution. The first member, e
-TJ

d t, is the total energy

supplied to the circuit, and the three terms of the second

member represent the three ways in which this energy is

expended, viz., in heat, creating the field, and charging the

condenser.

If equation (85) is divided through by idt, it becomes

an equation of E. M. F.'s, thus :

, . fidt
(87) e^m+L+J-.

If equation (86) is divided through by -r? d t, it likewise
a t

becomes an equation of E. M. F. 's, thus :

These are equations of E. M. F.'s : equation (87) in

terms of current, E. M. F., and time
;
and equation (88) in

terms of the charge of the condenser, E. M. F., and time.

Each term in (88) is equal to the corresponding term in

(87). The first member, e, is the E. M. F. impressed upon
the circuit. That part of e necessary to overcome the

resistance is Ri, or R -jr. That part of e necessary to

di
overcome the counter E. M. F. of self-induction is L -T-, or

L -5~, The third part of e, necessary to overcome the
Gu t

cm
counter E. M. F. of the condenser, is -

, or .

6 G
These differential equations may be written in forms

more convenient for solving. Differentiating equation (87)
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with regard to t, to free it from the integral sign, we

obtain

_
dt* L~di~T~L~C

By transposition (88) becomes

(90)

We know that the impressed E. M. F. has one value at

one particular time and is therefore a single-valued func-

tion of the time, that is, e =f(t). When we introduce this

relation into (89) and (90), the general solution of each of

these equations may be readily obtained. The solution of

equation (89) will give the value of the current at any time,

and the solution of equation (90) will give the value of the

charge of the condenser at any time.

de
If e =f(t), and

^-r =f (0 upon substitution in (89) and

(90), we have

GENERAL SOLUTION FOB CUERENT AT ANY TIME.

In solving equation (91) to obtain the value of the cur-

rent at any time, it is convenient to make use. of the sym-
bolic method for linear equations. (See page 101, Johnson's

Differential Equations.)
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Writing (91) in symbolic form, we have

' or

(93)

Kesolving the inverse operator,
- =

,
into

partial fractions, we have the identical equation

(94) *r-= LG

1

RG - 'v

* -LC

(95)

, 1LC
and Ta

-

Placing these values in (94), and substituting (94) in (93),

we obtain

Each term of equation (96), equated separately to t,

forms a linear equation of the first order. This will be

evident when we consider the linear equation of the first
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order between the variables x and y, viz., ^--\- ay =/().

When written in the symbolic form this becomes

(D + a)y=f(x),

(97) or y = -^-a/ (x).

The solution of this linear equation of the first order is

known to be (see Johnson's Diff. Equations, page 31)

(98) y = e
~ ax

fe
ax
f(x)dx + ce~ ax

.

Here c is the arbitrary constant of integration, and none

other must be added when the integration is performed.

By equating (97) and (98), we have

axJ-
/. / \ ax /*

J) + </(*)
= 6 J

If we replace a, in this general formula, by the constant

r, and/(x) by/
7

(), we have

But this is the value of the first term in the parenthesis

of equation (96). The value of the second term in that

parenthesis may be found in a similar manner, and (96)

may finally be written

(99) i = ^W^Tru *
"V6 * // (t) d l
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This is the general solution of equation (91) and gives

the current which flows at any time in a circuit having

resistance, self-induction, and capacity.

Since the differential equation (92) for the charge be-

comes identical with the differential equation (91) for the

current when we write f (t) instead of / (t), and since /
denotes any arbitrary single-valued function whatever, we

may in the general solution (99) suppress the accents on

the arbitrary functions and write the solution for q. Thus,

PARTICULAR ELECTROMOTIVE FORCES.

These equations, (99) and (100), express the values of

the current and charge at any time, when the impressed
E. M. F. is anything whatever, since/ is any arbitrary

single-valued function whatever.

There are four cases, covering all possible ones, which

arise according to the nature of the impressed E. M. F.

These are :

Case I. e =f(t) = 0.

Case II. e=f(t) = E= constant.

Case III. e = f(t) = ^sin GO t.

Case IV. e=f(t) = > Esm(ba)t + 0).

E, 6, 0.

The meaning of the first assumption is that the im-

pressed E. M. F. is to be zero at every point of time. This

condition is fulfilled if we charge a condenser with some
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quantity Q, and then suddenly remove the impressed

E. M. F., that is, if we connect the two plates of the con-

denser by a conductor so as to discharge it. The im-

pressed E. M. F. remains zero at every point of time after

the removal of the source of E. M. F., and consequently

satisfies the condition e ==f(t) = 0. The solutions of the

differential equations under this assumption give the cur-

rent at any time flowing in the circuit, and the charge
an any time remaining in the condenser, when an im-

pressed E. M. F. is suddenly removed from the circuit.

Jt may be any circuit whatever containing any combination

of resistance, self-induction, and capacity, that is, a circuit

containing R and L alone, R and C alone, or R, Z, and C

together. In case the circuit has R and C, or R, Z, and C,

the solutions will give the current i and quantity q at any
time during the discharge of the condenser. If the circuit

contains R and L alone, the solution will give the current

at any time as it dies away after the removal of the

E. M. F.

When we assume e =f(t) = E = a constant, we mean

that the E. M. F. is to be equal to E at every point of

time. This condition will be fulfilled if the source of

E. M. F. in any circuit is suddenly changed from one con-

stant value to another constant value, either of which may
be zero. If the circuit contains R and C, or R, Z, and C,

the solutions give the current flowing in the conductor

and the charge of the condenser at any time after the

change in the E. M. F. If the circuit contains R and L
only, the solution gives the value of the current at any time

as it changes to its final steady value.

The third assumption, e = E sin Got, means that the

circuit contains an impressed E. M. F. varying harmoni-

cally with the time. The solutions of the general equa-
tions for q and i show that when the impressed E. M. F. is

harmonic, both the current and the charge are likewise
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simple sine-functions of the time, having the same period
as the E. M. F.

The fourth assumption, e = ^> E sin (b ojt-\~ #),

-K, *>, (i-

where b takes in succession any integer values, means that

the circuit contains an impressed E. M. F. which is any

periodic function of the time whatsoever.

The solution and discussion of these four cases will be

considered in the following chapters.



CHAPTER VII

CIRCUITS CONTAINING RESISTANCE, SELF INDUCTION,
AND CAPACITY.

CASE I. DISCHARGE.

CONTENTS : Integral and differential equations when e =f(t) = 0. Sir

Wm. Thomson's solution, i equation with value of T replaced. Three

forms of * and q equations. To transform the /-equation to a real form

when R* C is less than 4Z. To derive the solutions from the differen-

tial equations when R* C= 4 L.

Non-oscillatory Discharge.

Determination of constants. Complete solution. Value of T re-

placed. Current and charge curves for a particular circuit. Time of

maximum current. Equation (125) applied to a circuit containing resist-

ance and self-induction only, and to a circuit containing resistance

and capacity only.

Oscillatory Discharge.

Determination of constants. Complete solution for i and q. Current

and charge curves for a particular circuit.

Discharge of Condenser when R* C = 4 L.

Determination of constants. Complete solutions for i and g. Figure

showing method of constructing the current and charge curves. Curves

for i and q in a particular circuit.

IN this chapter the case will be discussed in which the

impressed electromotive force is suddenly removed from

the circuit or reduced to zero
; that is, e =f(t) = 0. When

a current has been flowing in a circuit and the source of

electromotive force has been suddenly removed, the cur-

rent continues to flow for an appreciable time before

90
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dying entirely away. The value of the current at any
time may be ascertained by applying the general equation

(99) to this particular case.

As another example, we may have a condenser or

Leyden jar charged to a certain difference of potential, and

the source of potential then removed. If we now connect

the two plates of the condenser or coatings of the jar with

a conducting wire, a current flows through the wire and

the condenser is discharged. The source of potential was

previously removed, and so e =f(t) = 0. The general

equations (99) and (100) can be applied to this particular

case, enabling us to ascertain the current which flows at

any time in the circuit and the charge remaining in the

condenser.

Since f(t) = 0, the first derivative is f'(t) = ; and if

the value/' (t)
= is substituted in the general equation

(99) for current, and the value f(t) = Q in equation (100)

for charge, we have

t t

(101) i = c, e
Tl + ca

e
T
\

(102) <i=c3
e

:

'+c4
e

T
\

Had the value e = =f(t) been substituted in the

differential equation (92), and /' (t)
= in equation (91),

we should have had

It is to be noted that the form of the differential

equation for i is identical with that for q. Hence their
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integrals (101) and (102) have the same form, although with

different arbitrary constants of integration. The solutions

of the differential equations (103) and (104) which are

identical with (91) and (92) when their second members
are zero give what is called the "

complementary function
"

(see Johnson's Differential Equations, Art. 94). The

complementary function contains all the arbitrary con-

stants of integration. The sum of the particular integral

found to satisfy equations (91) and (92) when the second

member is not zero and the complementary function

gives the complete integral of the general differential

equations (91) or (92).

The particular case of the discharge of a condenser

through a circuit possessing resistance and self-induction

has been fully discussed by Sir "Wm. Thomson and was

published as early as 1853 in the Philosophical Magazine.

He obtained equation (102) as his result, which he showed

could be expressed in two different forms, according as T
l

and T^ are real or imaginary.

Writing equation (101) in full, by replacing the values

of T
}
and T

9 given in (95), we have

RC- -
_

(105) t = o,e" +c,e

If the value of R* C is greater than 4 Z, the value of i is

real
;
but if IF C is less than 4 Z, i apparently assumes an

imaginary form. It will be shown, however, that i can

by a trigonometric transformation be expressed in a real

form when IF C is less than 4Z.

When R* C is equal to 4 Z and we have the critical case,

it is evident that the two terms of equation (105) may be

written as one, and thus the two arbitrary constants com-

bine into one. The complete solution, which must contain

two arbitrary constants, inasmuch as it is derived from a
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differential equation of the second order, cannot be readily

obtained in thin case from (105) ; but it will be directly

obtained from the differential equations (103) and (104).

TO TRANSFORM EQUATION (105) TO A REAL FORM WHEN

R*C IS LESS THAN 4 Z.

_Rt
After factoring out the common factor e

2L
,
we may

write (105) in another form, thus :

(106) i=e 8Z>

|c,
2LC +c2

e
2LC

Here j is used to represent V 1. If we write

(107) =

then (106) becomes

_ ?_*

(108)
i = e

The sine and cosine may be written in exponential form*

thus :

JB -JB jB -jB

(109) sin 8 = - -~- - and cos = - -^
t/

* By Maclaurin's theorem for the expansion of a function into a series,

the sine and cosine may be developed into the following series :

(1) sin = 1 u etc.
-J Q Q 1^ 1 o Q A K -i Ct 9 A K R ff "^

^*"-"

l-^'O 1.2.0.4.5 1.2.3.4.5.D.7

J0
Also the development of e into series gives

06 67

6^__noAKtirvo I1.2.3.4.5.6 ''I- 2- 3. 4- 5. 6- 7



94 CIRCUITS CONTAINING

JQ
Therefore cos 6 -}- j sin = e ,

and cos j sin 6 = e

Multiplying through by c, and c
a , respectively, and add-

ing, we have

jo -j
(110) c,e -f- c

a
e =

(c x + c
a) cos -f- (^ cy)j sin 9.

If c, and c
a are conjugate imaginary quantities, they

may be written

+j
c. =

2
'

Multiplying (1) by ^' and adding to (2), we find that the resulting series is

identical with (3). Hence we obtain

3*
(4) cos0+^'siu = e .

-JB
The expansion of e into series gives

Q4 Q5

(5) e =1 _j9_ +j 1-2-3-4

1.2.3.4.5-6^

Multiplying (1) by,; and subtracting from (2), the resulting series is iden-

tical with (5). Hence we have

-JQ
(6) cos j sin = e

Adding equations (4) and (6) and dividing by 2, we get

JO -JO

(7)

Subtracting (6) from (4) and dividing by 2j, we have

(8)
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where A and B are both real quantities. Taking the sum
and difference,

c, + c
a
= A,

and substituting these values in (110), we have

(111) ^6+ c,e~
JQ = Acos6 + ^sin 0,

where c
l
and c

a are imaginary, while A and .Z? are real

quantities. Substituting (111) in (108), we obtain

o r

(112) * = e (A GOS0 + JB sin 0).

By the trigonometric formula [see Chapter III, equa-
tion (27)],

A cos B sin 6 = V^3+ ^3
sin (0 + tan

"'^ ),

we may finally write equation (112), after restoring the

value of 6 from (107), in the form

(113)

where A and $ are the arbitrary constants of integration.

Here A is not the same as in equation (112), but stands for

VA* + B\ and $ stands for tan'
1

-5 . This equation is

the equivalent of (105). It is real when (105) is imaginary
and imaginary when (105) is real.
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TO DERIVE THE SOLUTIONS FROM THE DIFFERENTIAL EQUA-

TIONS WHEN _Z?
20~ 1Z.

If E*C is equal to 4Z, then the differential equations

(103) and (104) become

Upon substituting i = em *, we have

(116) m. + | OT+ _*L =0
,

which is seen to be a perfect square as it stands, and con-

sequently the two values of m become equal, and
75

m = x. When there are equal roots, the solution is

of the form

i = Cj em *

-|- c
a
t em *

(see Johnson's Diff. Equations, page 95); or, replacing m by
73

its value, -v, we have as the complete solutions

Rt _Rt_

(117) i = c,i
2L + c,t

* L
,

_Rt _R_t

(118) q=c f
e

2L + c"te
2i

.

Returning to equation (103), we may write its solution

(101), the complementary function, in three different real

forms, according as the value of JR* C is greater than, less

than, or equal to 4Z. These forms are :
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When R*C> 4Z,

(119) ! =
<), +Ca

e

4Z,

i A e -sin
-

,)
^"T^TT
- * + ^

r2 JL C )

^2*0=42;,

(121)
2L

The value of the charge q given by equation (102), being
of the same form as (101), may take three different forms

according as 7?
2
<7is greater than, less than, or equal to 4Z ;

and these forms only differ from the above in the arbitrary

constants, thus :

Whenl?C> 4Z,

_ RC ~ VR*C*-4LC
f _ RC+ *R*C* -4LC

(122) g = c
fe~ +c"e 2LC

WhenffC < 4Z,

1/4Z C -
(123) q = A'e sin

(124) q = c'e
2L + c"te

2
.

The constants of integration in these equations are de-

termined by the initial conditions imposed by the problem.

For instance, if a condenser charged with a quantity Q is

suddenly discharged through a circuit with resistance and

self-induction, we may count the time from the moment of

discharge, and thus have q = Q and i = when t = 0, and

q = and i = when t = oo .
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NON-OSCILLATORY DISCHARGE.,

Determination of Constants. The equations (119) and

(122) may be written as in (101) and (102), in terms of the

time- constants T
l
and T^ [see (95)], thus :

T,
(125)

(126) q = c'e l +c"e \

The arbitrary constants c, ,
c

2 , c', c" of these equations
will be determined according to the conditions mentioned

above, viz., when t = 0, i = and q = Q ;
when = oo

,

* = and q = 0. Substituting in (125) i = when t = 0,

and in (126) q = Q when t = 0, we have

= c
l + c

a , or c,
= c

a.

(127) C = <>' + c".

Since we have the relation dq = idt, we may differen-

tiate (126) and write

Equating this and (125), we find

>= -TT, or c = -
c,

c"
c, = -

,
or c - -

c, ,.
* 9

Eemembering that c
t
= c

2 , we may write

c" = c,T,.

Adding c' and c",

c' + c" = c, (3*.
- ^) = Q. [See (127)].
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Hence c
l

,_-
T, - T,

Substituting in (125) and (126) the constants c, , c,, c', c",

as finally determined, we have

(128)

(129)

Discussion of Non oscillatory Discharge. These equa-
tions give the complete solution and express the current

or the charge at any time after discharge (see Fleming's
" Alternate Current Transformer," Vol. I. page 376). They
show that if we have the relation IFC > 4Z, the dis-

charge is a gradual dying away without oscillation. Since

TI and T^ are each of them positive when R*G > 4Z [see

(95)], i or q may be represented geometrically as the

difference of two decreasing logarithmic curves. To see

this more clearly, the values of the time-constants T
t
and

T
t may be substituted in the coefficients of equations (128)

and (129). The result is
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t

(131)

These equations may be more easily explained by refer-

ring to Figs. 20 and 21, which represent the plot of these

equations for particular assumed values of R, Z, and C.

The values assumed for the constants of the circuit are

It 100 ohms, Z = .0016 henrys, (7=1 microfarad.

By calculating the values of T
l
and T^ [equation (95)],

T
l
= 8 X 10- 5

,
and T

t
= 2 X 10 - 5

,
the equations (130) and

(131), with these particular values, become

(132)

(133) <7
=

* t

-< r'

2X10-5

If the condenser was charged to a potential of 2000

volts, the capacity being .000001 farads, the charge is .002

coulombs. Substituting this value for Q, we have

i = 33.33 e - e

where i is in amperes and q in coulombs.

In Fig. 20, curves I. and II. represent the two compo-
nent logarithmic curves, corresponding to the first and
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second terms, respectively, of equation (130),wliose difference

gives the resultant current curve III. Curve II., cor-

responding to the second term, has the larger time-constant,
and is therefore the more important curve. The area in-

!OxlO"5 Seconds .- 30 x 10
s

FIG. 20. CURVE SHOWING CURRENT DURING NON-OSCILLATORY DIS-

CHARGE OP CONDENSER WITH CAPACITY (7=1 MICROFARAD,

THROUGH A CIRCUIT WITH RESISTANCE R = 100 OHMS, AND SELF-

INDUCTION L = .0016 HENRYS, WHEN ORIGINALLY CHARGED TO A
POTENTIAL OF 2000 VOLTS.

eluded between curve III. and the axis of abscissae is equal

y-
id t = Q, and is therefore independent of the constants

of the circuit through which the condenser is discharged.

The current is a maximum at a point which may be de-

termined by differentiating equation (130) and equating the

first derivative to zero in the usual manner for a maximum.
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The time tm at which the current is a maximum is thus

found to be

(134)

LC

FIQ. 21. CURVE SHOWING NON-OSCILLATORY DISCHARGE OP A CON-

DENSER, WITH CAPACITY (7=1 MICROFARAD, THROUGH A CIRCUIT

WITH RESISTANCE R = 100 OHMS, AND SELF-INDUCTION L .0016

HENRYS, WHEN ORIGINALLY CHARGED TO A POTENTIAL OF 2000

VOLTS.

Substituting in (134) the particular values used in plot-

ting Fig. 20, we find the time when the current is a maxi-

mum to be

tm =3.7S X 10
~ 5

.

In Fig. 21 curves I. and II. are the two component loga-

rithmic curves, corresponding to the first and second terms,

respectively, of equation (131) for charge. Curve III. is

plotted by subtracting II. from I., and represents the
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charge of the condenser at any time. It is noticeable that

the upper curve, I., has the larger initial value, and as T
t

is larger than T7

,,,
decreases the slower. It is therefore

this curve which is the more important in determining the

discharge of the condenser.

EQUATION (125) APPLIES TO A CIKCUIT CONTAINING RESISTANCE

AND SELF-INDUCTION ONLY.

If there is no condenser in the circuit, as explained in

Chapter IV., it is equivalent to saying that there is a con-

denser of infinite capacity in the circuit. Substituting

C = oo in the equation (95) for the time-constants, we have

2Z6Y

1
~~ KG- V I?C'A -

2ZC
*

According to equation (101), we have the value of the

current at any time

L J.

i = Cl e Tl +c,e
T
\

Substituting in this equation the values of T
t
and T^

above, we have

When t = 0, i = I, that is, the current flowing previous
to the removal of the E. M. F. This gives

But when t = oo
,
i = c

l
= 0. Substituting these values

for the constants, we have
Rt

a result which is well known [see equation (18)].
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EQUATION (125) APPLIES TO A CIRCUIT CONTAINING RESISTANCE

AND CAPACITY ONLY.

Upon substituting L = in the values of the time-con-

stants jT, and T^ (95), the expressions become indeterminate,

but can readily be evaluated by differentiating numerator

and denominator, and then substituting L as in ordi-

nary vanishing fractions.

EC-VtfC*-

Differentiating numerator and denominator with respect

to Z, we have
d

Now letting L = 0, we have

T, = E C. Similarly, T, = It C.

Substituting these values in equations (101) and (102),

we have

(135) -4'/
w+<**.

- + -
(136) q=c,e +ct

e
'

'.

c, and c
4
must each be zero, or else when t = GO we would

have i = oo and q = oo . When t = 0, q = Q = c
3 . By

differentiating (136) and equating to (135), we have

.dq_
-df~

and, therefore, c,
=

_!_ JL
RC ._ RC

CR
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Substituting in (135) and (136) the values found for the

constants c
a ,

c
2 ,

c
3 ,

c
4 ,
we have

(137) i--^-^ = /-**.

(138)
RC

These are the well-known results for the case of discharge

through a circuit with no self-induction [see equations (67)

and (68)].

OSCILLATOKY DISCHAKGE.

Determination of Constants. In the case, of oscillatory

discharge, the equations for current and charge at any
time are

/iom /tt I V4LC-J?C' . -)
(120) ^=Ae sin

j

-
-^-^ <+*}.

Rt

(123) ? =

The arbitrary constants ^4, ^4', $, and & will be deter-

mined according to the same conditions as those mentioned

above, viz., when t = 0, i = and q Q ;
also when = GO

,

i O and # = 0. Substituting in (120) i = when t = 0,

and in (123) q = $ when = 0, we have

= A sin #,

(139) and Q = A 1
sin .

Since ^4 and sin $ are constants, and their product is

zero, one of them must be zero. But if A is zero, i is zero

for every point of time, which is impossible. Therefore

(140) = 0.
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Differentiating (123) and remembering that i = -77 ,
we

ct
*

have

A'e

Substituting i = when t = 0,

= E sin #' -f
- cos

t/A T /Hf D2 /T8

(142) Hence $' = tan' 1
"'

-
.

By (139), A' =
^J~> And, by (142),

O
(143) A'=

sin tan "

EC V1-^'
To determine the constant A, transform (141) by the

formula (27) so as to write it in terms of a sine only. The

coefficient of the sine in the equation as transformed will be

Since equations (141) and (120) are each equations for /,

we may equate the coefficients of the sine, and have

A'
~~

And, by (U3),

(144)
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Substituting A and #, as determined in (144) and (140),

in equation (120), and substituting A' and $', as determined

in (143) and (142), in equation (123), we have

m_
2L

!>/

(146) ,=
* QVLC -^

Discussion of Oscillatory Discharge. These equations

may be more readily understood by referring to Fig. 22,

in which curves showing the current and charge, according
to these equations, are drawn for the discharge of a con-

denser for particular values of 7?, Z, and C\ assumed. The

particular constants assumed are

R 100 ohms, L = .0125 henrys, G = 1 microfarad.

If the condenser be originally charged to 2000 volts, Q =
.002 coulombs. On substituting these values in (14#) and

(146), the equations for current and charge become

t = 20e~
^

sin 8000 f, and

q = .00224 e~
^

sin (8000 1 + tan"
*

2),

where i is in amperes and q in coulombs. Curve I., repre-

senting the current, is a sine-curve with an amplitude de-

creasing according to the logarithmic curve 20 e

2 7T

The period is = .000785 seconds ;
that is, there are

1275 complete oscillations per second. A very few oscil-

lations are sufficient for a complete discharge.

The charge at any time is shown in curve II., which is

likewise a sine-curve with an amplitude decreasing accord-
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-4000*
ing to the logarithmic curve, in this case .00224 e

The scale in Fig. 22 is such that the same logarithmic curve

is an envelope for the current and the charge curve. The

periods of the two are the same, but the curves differ in

FIG. 22. OSCILLATORY DISCHARGE OP A CONDENSER WITH CAPACITY

C = 1 MICROFARAD, THROUGH A CIRCUIT WITH RESISTANCE R
100 OHMS, AND SELF-INDUCTION = L .0125 HENRYS, WHEN ORIGI-

NALLY CHARGED TO A POTENTIAL OF 2000 VOLTS.

phase by an angle = tan~ J

2, that is, the charge is ahead of

the current by an angle of advance of 63 27'.

DISCHARGE OF THE CONDENSER WHEN J?
2C = 4 Z.

Determination ofConstants. This is the critical case when

the discharge is just non-oscillatory. The equations for

the current and charge, as previously determined, are

(121)

(124)

I = C, 6

q = c e

in
2L

Rt
2L c"te

2L

Rt
2L
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The arbitrary constants of integration, c,, c
a > c', c", of these

equations will be determined by the same conditions as in

the previous cases, namely, when t = 0, i = and q = Q.

Equations (121) and (124) then become

(147)
=

Cl ,

Q = c'.

Differentiating equation (124) ajid substituting Q for c', we

obtain

But when t = 0, i = 0; therefore

(149) c" = |j .

Equating equations (121) and (148) and replacing the values

for the constants given in (147) and (149), we have

(150)
- **

Substituting for Q its value E C, and for R* its equivalent,

LJ

"(7
in this particular case T , (150) becomes

.7

Having thus determined the values of the arbitrary con-

stants, the equations for current and charge may be written

(152) 2 =M + ^I0 6
2i

.

Discussion of Discharge ivlien R* C = 4 L. These equa-

tions give the value of the current and charge at any

time during the discharge of the condenser in the case
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where the discharge is just non-oscillatory. This case

is often called the case of quickest discharge, as was pointed
out by Dr. W. E. Sumpner in the Philosophical Magazine,

and afterwards discussed by Dr. Oliver Lodge in the Elec-

trician for May 18, 1888.

The curve representing the plot of the equation (151)

for the current may be drawn as indicated in Fig. 23. A

PIG. 23. SHOWING METHOD OP CONSTRUCTING THE CURRENT CURVE

IN THE CASE WHERE .R2 C = 4 L.

Tfl

logarithmic curve L, having its initial value
y-

and time-

2Z
constant ^ > is drawn to represent the equation as it would

be with t omitted from the coefficient ;
and each ordinate

is then multiplied by the ordinate of a straight line II.,

which passes through the origin and represents the uniform

increase of the time t. The product of the ordinates of

curves I. and II. at each point gives the ordinate of the

current curve III. at that point. When actual values of 7?,

Z, and C are assumed, it is found to be difficult to repre-

sent these curves to scale, so that Fig. 23 is shown simply
as an illustration of the method of constructing the current

curve. Curve I., Fig. 25, represents the current in an

actual case where R = 100 ohms, Z = 2.5 henrys, and C =
1000 microfarads, the condenser being originally charged
to a potential of 2000 volts.

The method of constructing the curve, showing the
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charge left in the condenser at any time, is given in Fig. 24,

and is similar to the method just shown for constructing

Time

FIG. 24. SHOWING THE METHOD OF CONSTRUCTING THE CUKVE REP-

RESENTING THE CHARGE LEFT IN THE CONDENSER AT ANY TIME
AFTER DISCHARGE.

the current curve. The difference is that the straight line

passes through a point one unit above the origin, on the

vertical axis, instead of through the origin as before.

FIG. 25. JUST NON-OSCILLATORY DISCHARGE OF A CONDENSER WITH
CAPACITY C = 1000 MICROFARADS, THROUGH A CIRCUIT WITH

RESISTANCE R = 100 OHMS, AND SELF-INDUCTION L = 2.5 HENRYS.

The logarithmic curve has the initial value Q and a time-

2Z
constant -~- . The curve showing the charge for the actual

case where E = 100 ohms, L = 2.5 henrys, and C= 1000

microfarads, the condenser being originally charged to a

potential of 2000 volts, is represented by curve II.,

Fig. 25.



CHAPTEE VIII.

CIRCUITS CONTAINING RESISTANCE, SELF INDUCTION, AND
CAPACITY.

CASE II. CHARGE.

CONTENTS: Differential equations with e =f(t) = E. Solution of these

equations. Solution from the general integral equation.. Three forms

of i and q equations.

,
Non oscillatory Charging.

Determination of constants. Complete solutions for i and q with

constants determined. Curves for i and q in a particular circuit. Equa-
tion (101) applied to a circuit containing resistance and self-induction

only ; also to a circuit containing resistance and capacity only.

Oscillatory Charging.

Determination of constants. Complete solutions for and q with

constants determined. Curves for i and q in a particular circuit.

Charge of the Condenser when K*C= 4.

Determination of constants. Complete solutions for i and q with

constants determined. Curves for i and q in a particular circuit.

THE E. M. F., instead of being zero, as in Case I., is

assumed to be a constant E, and e =f(t) = E. This is the

case when an E. M. F. is suddenly changed from one con-

stant value to another constant value in a circuit, and it

includes Case I. as a particular case, since E may be zero.

Since e is a constant, the first derivative of e is zero, and,
112
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therefore,/
7

(t)
= 0. Substituting these values of/() and

'() in the differential equations (89) and (90), they become

d'i R di i

(153>
- + + =0

>

E
(154) and +

It is seen that the equation for current (153) is identical

with that of the previous case (103), while the equation for

J?

charge (154) has its second member equal to
y,

a constant,

instead of being zero as in equation (104). By substituting

a new variable, q
f = q E C, this equation may be trans-

formed into one having its second member zero, thus :

The solutions of (153) and (155) are, as in the previous case,

L _ L
(101) i = c

l
e~ Tl + c

2
e~

T
\

L 1.
T'

T

Keplacing the value of q'9
and remembering

the final charge, we may write

(156) <t
= Q + c

3
e

T> + c<e
T
>.

These equations, (101) and (156), for current and charge

might have been obtained directly from the general solu-

tions (99) and (100) by substituting/^) = E, and/' (t)
= 0.

Upon substitutingf (t)
= in (99), we obtain (101) directly,

and upon substituting/^) = Em (100), we have

EC ~ L - 1
**
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But, by the values of T, and T
t
in (95), we find that

T, T
2
= V1?C* - 4Z C\ and hence this equation is

identical with (156), as Q == EG.
As in Case I, wheref(f) = 0, the equations just obtained

for current (101) and charge (156), when / (t)
= E

t assume
three forms.

(157)

<168)

(159) i =

_Rt

(160) q = i

_ _

(161) t = o/e
2L + c,te

2L
.

Rt _ Rt
^ 2L

(162) q

The constants of integration must be determined by the

conditions of the problem as to the previous state of the

circuit, the changes made, and the final state.

NON-OSCILLATOBY CHARGING.

Determination of Constants. The constants c, , c, , c', and

c" of equations (157) and (158) will be determined by the

following conditions :

When t = 0, i = and q = Q .

When t = oo ,
i = and q = Q.
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This means that the condenser is suddenly charged or dis-

charged from the initial charge Q to the final charge Q.

Determining the constants by the same method as in Case

I., we find that

_
c

-

T, - T;

2 rrr _ rri >

-*
1

-1- 2

_
' - /TT __ /T7

*
i

-*
a

r,,_(Q.-Q)Tt

T,-T,
'

Substituting in (157) and (158) the values of the constants

just determined, we have

(163)

(164)

For Q , the original charge, we may write OE , and for Q
the final charge, we may write C E.

These equations give the value of the current and

charge at any time after the change of E. M. F. from E to

E in a circuit with 7?
aC > 4 L. As the equations now

stand in their general form, they hold true for either total

or partial charge or discharge according to the values of

E
Q
and E, and consequently Q and Q, assumed. If the

final charge is Q = 0, we have the case of complete dis-

charge and the equations take the form of (128) and (129).

If the original charge Q = 0, we have the case of charge

from zero to Q.
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Discussion of Non-oscillatory Charge. These equations
will perhaps be better understood by referring to Fig.

26, which represents the equations with particular values

I 6 8 l'Ox.10'5 Seconds 20

FIG. 26. NON-OSCILLATORY DISCHARGE OF A CONDENSER WITH CA-

PACITY (7=1 MICROFARAD, THROUGH A CIRCUIT WITH RESISTANCE

R = 100 OHMS AND SELF-INDUCTION L = .0016 HENRYS WHEN SUB-

JECTED TO A POTENTIAL OF 2000 VOLTS.

assumed. These values are the same as in the pre-

ceding case, namely, R = 100 ohms, C = 1 microfarad,

L = .0016 henrys. The condenser originally had no charge,

and when charged to a potential of 2000 volts, has a

charge of .002 coulombs. The current curve I., Fig. 26,

is identical with curve III., Fig. 20, which represents the

current during discharge. Curve II. representing the

charge is the same as curve III., Fig. 21, inverted and

plotted downwards from the horizontal line Q = .002. It

is noticeable that the ordinates of curve I., expressing the

current, are proportional to the tangents of the angle of

inclination of curve II. at every point, since the current

i = -^- ,
and -^ is the tangent of the angle of inclination of

Cl t CL t

the curve of charge II. It is seen that the point of inflec-

tion on curve II. comes at the maximum value of the current

curve I., as the tangent is a maximum at this point. In-

deed, curve I. might be constructed geometrically simply

from the foregoing consideration.
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EQUATION (101) APPLIES TO A CIRCUIT CONTAINING RESISTANCE

AND SELF INDUCTION ONLY, IN THE CASE OF THE ESTABLISH-

MENT OF A CURRENT UPON INSERTING AN E. M. F.

In this case there is no condenser in the circuit, that is,

the capacity is infinite. Substituting C = oo in the values

of the time-constants (95), we have T
t
= oo , T9

=
-^,

as in

Case I., where the current dies away after the removal of

the E. M. F. Substituting these values in (101), we have

When t = 0, * = = c, + c,.

When t = oo , i = /= c,. .*. c
a
= /.

Substituting these values for the constants c, and c,, we

have

/ is the final steady value of the current, and is equal to

E
--, hence

(21)

which is the well-known expression for the establishment

of a current in a circuit with self-induction [see equation

(21), Chap. III.].

EQUATION (156) APPLIES TO A CIRCUIT CONTAINING RESISTANCE

AND CAPACITY ONLY IN THE CASE OF CHARGING A CONDENSER.

Upon substituting L = in the values of the time-con-

stants jP,and T9t the expressions become indeterminate, but
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can be evaluated as before by differentiation of numerator

and denominator before substituting L = 0. We thus find

the values, when L = 0,

T, = BC. T, = - E G.

Substituting these values in the equations of current (101)

and charge (156), we have

(165) i = Cl e~ + c, e
+jrc

.

(166) g= Q + Cs e- + c.e. '
'

Q is the previous charge of the condenser, and Q the final

charge. The constants c
2 ,

c
4 must be zero, or else when

t = oo we would have i = oo , q = oo . When t = 0, equa-
tion (166) becomes

Q.= Q + c.. .'.c
% =Q -Q.

By differentiating (166) and equating to (165), we have

t t.dq _ c
a -RC _ -RC

~dt~ ~BC e
l

Therefore

Substituting in (165) and (166) the values for the constants

cu c
a , c

3 ,
c
4 , as determined,

(167) i= - Q
JRC?

e~*-

(168) ?

These equations are true for the charge or discharge
from Q to Q, through a resistance with no self-induction.

When the final charge Q is zero, we have the case of com-

plete discharge, and the equations become the same as (137)
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and (138). When the original charge QQ
is zero, we have

the case of charging from zero to Q, and equations (167)

and (168) become

These equations are identical with (72) and (71), already

obtained in Chap. V. It is noticeable that the current

equation is the same as that for discharge equation (137),

and that the charge equation is analogous to that in the

case of the establishment of the current in a circuit with

resistance and self-induction, equation (21).

OSCILLATORY CHARGING.

Determination of Constants. The constants A, A'
t 4>,

and $' in equations (159) and (160) will be determined by
the same conditions as before, namely,

When t = 0, i = and q = Q .

When t QO
,

i = and q = Q.

The meaning of this supposition is the same as in the pre-

ceding case, namely, that the condenser is suddenly charged
or discharged from the initial charge Q to the final charge

Q. The constants, determined by the same method as in

Case I., are

R C
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With the constants thus determined, equations (159)
and (160) become

(170) g =

sin
f.

We may write C^ for the original charge Q , and CE for

the final charge $.

Discussion of Oscillatory Charge. These equations give

the value of the current and charge at any time after

the change of the electromotive force from E to E in

a circuit with R* G < 4 L. As the equations now stand

in their general form, they are true for either total or

partial charge or discharge, according to the values

assigned to Q and Q. If the final charge Q is zero, we
have the case of complete discharge, and the equations take

the form of (145) and (146). When Q is less than Q , we
have partial discharge ;

if Q is greater than Q , we have

partial charging. If the original charge Q = 0, we have

the case of charge from zero to Q.

Fig. 27 illustrates the case of oscillatory charge through
a circuit having the same constants as those of Fig. 22.

The current curve I. is the same as that in Fig. 22, and the

charge, represented by curve II., is the same as in that

figure, but inverted and plotted from the horizontal line

Q =. .002. It is seen that in charging the condenser, the

charge rises at first higher than its final value, and then

oscillates about that final value until it has become steady.
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CHARGE OF THE CONDENSEK WHEN R* C 4 L.

Determinatioti of Constants. This is the critical case,

where the charging is just non-oscillatory. The equations

for current and charge are

(161)

(162)

2L
Rt
2L

Rt R_t
2L

The initial charge is Q , and the final charge Q. To
determine the arbitrary constants of integration, let t = 0.

rl<f
4 Second.

FIG. 27. OSCILLATORY CHARGE OF A CONDENSER WITH CAPACITY C =
1 MICROFARAD, THROUGH A CIRCUIT WITH RESISTANCE M = 100

OHMS AND SELF-INDUCTION L = .0125 HENRYS WHEN SUBJECTED

TO A POTENTIAL OF 2000 VOLTS.

Then i 0, and q = Q . Equations (161) and (162) then

become

c,
= 0.

c'=Q,- Q.
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Differentiating equation (162) and substituting the value of

c', we have

When t = 0, i =
; therefore

_

Equating equations (161) and (171), and replacing the values

for Cj, c', and c", we have

'

If jE
7

,,
and ^7 are the initial and final potentials, respectively,

we may write E C for Q , and ^6Y
for Q. Making this sub-

stitution and remembering that in this particular case

4ZR = -r* we

Keplacing the values of the arbitrary constants, the equa-
tions (161) and (162) for current and charge may be written

T? -fl ---

(172) L

Rt

(173)

Discussion of Charge when J?
3 C = 4 L. The current

Curve in the case of charging a condenser, represented

by equation (172), is the same as in the case of discharge,

equation (151). It is represented in Fig. 28, curve I.,
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and may be constructed by the method shown in Fig. 23.

Curve II.
, Fig. 28, showing the charge is constructed in

FIG. 28. JUST NON-OSCILLATORY CHARGE OF A CONDENSER WITH

CAPACITY C 1000 MICROFARADS THROUGH A CIRCUIT WITH

RESISTANCE R = 100 OHMS, AND SELF-INDUCTION L 2.5 HENRYS.

a similar manner to curve II., Fig. 25, and, indeed, curve

II. of Fig. 28 is identical with curve II. of Fig. 25, it

being inverted and plotted downwards from the horizontal

line.



CHAPTER IX.

CIRCUITS CONTAINING RESISTANCE, SELF-INDUCTION,
AND CAPACITY.

CASE III. SOLUTION AND DISCUSSION FOB HARMONIC E. M. F.

CONTENTS : To find from the general solutions the particular equations in

the case of an harmonic E. M. F. Complete solutions for t and q.

These same solutions obtained directly from the differential equations.

Discussion of Case IIL Harmonic E. M. F.

The impediment. Case A. Circuits containing resistance and self-

induction only. Case B. Circuits containing resistance and capacity

only. Case C. Circuits containing resistance only. Case D. Circuits

containing capacity only.

Effects of Varying tfte Constants of a Circuit.

First. Electromotive force varied. Second. Resistance varied.

Third. Coefficient of self-induction varied. Fourth. Capacity varied.

Fifth. The frequency varied.

The energy expended per second upon a circuit in which an har-

monic current is flowing.

THE EQUATIONS FOR AN HARMONIC E. M. F. OBTAINED FROM

THE GENERAL SOLUTION.

In the preceding cases considered, those of discharge and

charge, the solutions for the value of the current and charge
Mt any time were obtained in two ways, first from the general

solution, and then directly from the differential equations, by

substituting e =f(t) = 0, and e =f(t) = E, respectively.
124
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The case of a circuit containing resistance, self-induc-

tion, and capacity, in which there is an impressed E. M. F.

varying harmonically, will now be considered, and the solu-

tion derived first from the general equations (99) and (100),

and then directly from the differential equations (89) and

(90). In this case,

(174) e=f(t) E sin cat,

de
(175) and

JT =/' (t)
= E GO cos GO t.

Substituting these values in (99) and (100), we have

(176) t =

_
-e 'e r

'cos

and

nn i
- t t

(177) y=-=

_+ - -
e

T
*fe

T* sin cotdt
|+c,e

Tl +c4
e

T
\

The solution for q being similar to that for i, we will

give the integration and reduction of (176) alone, and simply

give the resulting expression for
q. The integrals may be

found by the formulae of reduction [see equations (24) and

(25), Chapter III.], obtained by integrating by parts. The

integration of each term in (176) is

(178)

r + i(l-- -< COB co
r +

Je
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For convenience in transformation and reduction, put

r
l
=

-jfr
and r

a
= -^ . After making these substitutions in

*i *i

equation (176), we have

(179) i =
i (-;&*

-
VTT^)

cos -'

We may simplify (179) by substituting the values of r
l
and

r, [see (95)].

" T
9

"
ZLC

Then, after a few simple algebraic transformations in the

coefficients of the sine and cosine, (179) becomes

(180) i=
E

_
'

This may be transformed into a more convenient form by
means of the trigonometrical formula [see equation (27),

Chapter III.]

A sin x + B cos x = VA* -f-
a
sin fee -f- tan'

1

-j/>
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and when transformed is written

(181) = E

sin
-j

oo t -f- tan' 1

(\CE

This is the complete solution for the current in a circuit

resistance, self-induction, and capacity when the

j. M. F. is harmonic and equal to E sin out. The discussion

of this equation is deferred to the latter part of the chapter.

To FIND THE EQUATION FOB CHAEGE.

The corresponding equation for charge, being the inte-

gral of the current according to the relation q / id t, may

be written

(182) q =

This equation is the complete solution for the charge in a

circuit with resistance, self-induction, and capacity, when
there is an harmonic impressed E. M. F.

To OBTAIN THE SOLUTION DIEECTLY FEOM THE DIFFEEEN-

TIAL EQUATION.

Let us now proceed to obtain this same solution, equa-
tion (181), by solving the original differential equation,
with the assumption that the E. M. F. varies harmonically,
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de_

dt

de
that is, e = E sin GO t. Substituting -77 = E GO cos a? t in the

differential equation (89), we have

d*i Rdi i EGO

This is a linear equation of the second order with constant

coefficients. [See Johnson's Differential Equations, page

91]. The complete integral of such an equation consists of

the sum of two parts, namely, the particular integral and

the complementary function. The complementary function

is the integral obtained by equating the first member to

zero, and contains two arbitrary constants. The particular

integral contains no arbitrary constants. The comple-

mentary function, obtained by equating the first member to

zero and solving, is

(101)

To find the particular integral, it is convenient to use the

symbolic notation

With this notation (183) is written

E GO
=- cos cot

or =
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Next, to fiucl the value of D\ we liave

d cos GO t

dt
= D cos oo t = GO sin GO t,

d cos cot
7-7
- = D COS GO t = GO* COS GO t."

Therefore Z>* = GO*.

Substituting in (184) Z>a = G0
2

, we have

EGO
(185)

=
JT> -T -^- cos cot

EGO
i COS 0) t.

Multiplying numerator and denominator of the coefficient

of cos GO t by RD (-^ L ft?
2

), we obtain
> *

.

I - -* r-3
- COS GO t.

Substituting GO* for D\ and separating into two terms^

E GOED cos GO t+ EGO f -^ L GO*\ cos GO t

But D cos <* = <a sin < <. Hence

"

* + - - v^a(y3 +
(^-

- L
<')



130 CIRCUITS CONTAINING

This is the particular integral, to which must be added the

complementary function (101) in order to obtain the com-

plete integral. The complete integral is thus found to be

ECO (-79 LGO*} COS GO t

_,_. . &mGot \C I

(186) t=-

This solution for the current obtained from the differential

equation (89) is seen to be identical with (180), the result

obtained from the general solution (99). The solution for

charge could be obtained in a similar manner from the dif-

ferential equation (90).

DISCUSSION OF CASE III. HARMONIC E. M. R
These solutions, (181) and (182), show that, after a very

short time has elapsed, so that the exponential terms con-

taining the arbitrary constants of integration become in-

appreciably small and can be neglected, both the current

and the charge are simple harmonic functions and may
either lag behind or advance ahead of the impressed
E. M. F. The current lags behind the impressed E. M.JF.,

when L GO> -~
, and advances ahead of it when L GO

When L co =
, that is, when GO =

,
there is 110

lag or advance, a,n^^he__cjarrent^js_ exactly in phase with

the impressed E. M. F. In this case the current equation
becomes

. E .

i = -=- sin GO t,
1

which is identical with the current equation obtained from

Ohm's law, without considering either self-induction or
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capacity. When the sine is unity in (181), the maximum
value of the current, represented by /, is

(187) 1=

From the analogy of this equation to Ohm's law, we see

that the expression V R* -j- ( ^ L GO
J

is of the nature

of a resistance, and is the apparent resistance of a circuit

containing resistance, self-induction, and capacity. This

expression would quite properly be called "impedance,"
but the term impedance has for several years been used as

a name for the expression VR* -\- L* co
a

, which is the appa-
rent resistance of a circuit containing resistance and self-

induction only [see equation (29), Chapter III.]. We would

suggest, therefore, that the word "impediment" be adopted

as a name for the expression y ft* -f- ^ - L
coj

,
which

is the apparent resistance of a circuit containing resistance,

self-induction, and capacity, and that the term impedance
be retained in the more limited meaning it has come to

have, that is, VR* + ^3 <* the apparent resistance of a cir-

cuit containing resistance and self-induction only. Equa-
tion (187) may be written

Maximum E. M. F.
(188) Maximum current = =r- ^

Impediment

Since the virtual current (the square root of the mean

square of the instantaneous values of the current) is equal

to - - times the maximum value of the current, and since
4/2

the virtual E. M. F. = times the maximum E. M. F.,

Virtual E. M. F.
(189) Virtual current = T JT

Impediment
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It is convenient to consider the impediment as a resistance,

and we are justified in so doing inasmuch as it has the

same dimensions as a resistance, that is, a velocity in the

electromagnetic system of units.

2*
GO = pfp

-
Time

L = Length.

Therefore, L GO = -f=
~ = velocity.

(Time)'C = f
-

77-
*

Length

1 Length
77 TF7

- = velocity.Coo Time

This gives the dimensions of a velocity to the whole expres-
sion for the impediment, which may therefore be considered

as a resistance.

The several particular cases of circuits containing vari-

ous combinations of resistance, self-induction, and capacity

may readily be found by means of the general solution,

equation (181).

CASE A. CIRCUITS CONTAINING EESISTANCE AND SELF-

INDUCTION ONLY.

In this case the circuit has resistance E and self-induc-

tion Z, and an harmonic E. M. F., E sin GO t. There being

no condenser in the circuit, the capacity C is infinite [see

page 67, Chapter IV.]. After the lapse of a very small time

the terms containing the constants of integration in the

general solution may be neglected as explained above.

Substituting in (181) Ccc, we have

E ( .Loo
i = , sin

VR* + D
\ cot tan" 1 n~ t.
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This equation has been independently obtained from the

differential equation [see equation (28), Chap. III.]. The

current must always lag behind the impressed E. M. F. by

an angle whose tangent is ~- . In this case the impedi-

ment takes the particular value Vlf -\- D GO\ which is

known as the impedance of the circuit.

CASE B. CIRCUITS CONTAINING KESISTANCE AND CAPACITY

ONLY.

In this case the circuit has resistance R and capacity

(7, with an harmonic E. M. F., e = E sin GO t. Substituting

L = in the general equation (181), we have

E 1

+ tan-
1

This equation has been independently obtained from the

differential equation [see equation (78), Chapter V.]. The

current must always advance ahead of the impressed
E. M. F., when there is resistance and capacity only in the

circuit, by an angle whose tangent is -

CASE C. CIRCUITS CONTAINING KESISTANCE ONLY.

In this case the self-induction L = 0, and the capacity

C = oo . Substituting these values in the general solution

(181), we have

. E
I = ~n Sin GO t.K
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This result is immediately derivable from Ohm's law. Thus,

Since e = E sin GO t,

e E ,

. E
or * = IT sin

Ji

CASE D. CIRCUITS CONTAINING CAPACITY ONLY.

In this case R = 0, and Z = 0. Substituting in the

general equation (181), we have

i = CEGO sin ) cot -f- ^ ( .

(
J

)

This is identical with equation (80), Chapter V.

EFFECTS OF VARYING THE CONSTANTS OF A CIRCUIT.

The general equation (181) enables us to ascertain the

current which will flow in a circuit when we know its re-

sistance, self-induction, and capacity, the value of the im-

pressed E. M. F. and its frequency. It is important to know

two things about the current
; first, its maximum value /,

and, second, the angle by which it lags behind or advances

ahead of the impressed E. M. F. The mean square value

is readily obtained from the maximum value. We are given

fl, C, Z, E, and GO. The angle of lag or advance is

(190) e =

1 LGO
or tan 6 = ~-~-- ~-.

CEGO B

This is an angle of advance or lag, according as
GO
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greater or less than ^- The maximum value for the

current is

*

(191) 1=

It is interesting to note how any change in 7?, Z, (7, G?, or

77 affects the value of and the current.

First. If the impressed E. M. F. ^ is varied, and R, Z,

(7, and GO are maintained constant, B is not affected, and

the angle of lag or advance remains unchanged. The value

of the current is varied in direct proportion to E.

/cc E.

Second. If the resistance R of the circuit is varied, and

Z, C, GO, and E are maintained constant, as R is increased,

the angle of lag or advance is diminished.

tan0 a

The sign of tan is positive or negative, and the angle

therefore one of advance or lag, according to the values of

Z, C, and GO, and is independent of any variations in the

resistance. The current is in all cases diminished by an

increase of resistance, but the amount of this decrease

depends not only upon R, but upon the relation between

-~- and Z oo.
Coo

In Fig. 29 are shown two particular cases of the varia-

tion in the current produced by change in the resistance.

Curve I. is for a circuit in which

Self-induction Z = 2 henrys = 2 X 109 C. G. S. units.

Capacity C = .55 microfarads = .55 X 10~ 15 C. G. S. units.

Impressed E. M. F. E = 200 volts = 200 X 108 C. G. S. units.

2 Tin = GO= 955.
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The abscissae represent resistance in ohms (1 ohm = 109

C. G. S. units of resistance). The ordinates represent cur-

rent in amperes (1 ampere = 10' 1 C. G. S. units). The

20. 40. 60. 80. 100. 120. 140. 160. 180. 200.

FIG. 29. VARIATION OF CURRENT WITH CHANGE IN RESISTANCE IN A
CIRCUIT IN WHICH E = 200, C = .55, L = 2.

relation between L, (7, and GO here taken is such that

77- = L GO, or c =
,
which is the relation that gives

no angle of lag or advance. The relation between current

and resistance is the same as in Ohm's law, and when

plotted gives the hyberbola curve I. In the same figure,

curve II. represents the value of the current with different

resistances in a circuit in which

L = 2 henrys,

C = .55 microfarads,

E = 200 volts,

co = either 1000 or 912.

The constants here are the same as in the previous case,

with the exception of GO, which has been changed from

955, that is, ,
to either 1000 or 912. Any change in

v -L C
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co from the value = ,
whether it be an increase or de-

VL G
crease, causes the curve to depart from the hyperbola, curve

I. It is to be noticed that a change in frequency of only

seven alternations per second will change the curve from I.

toll.

Third. If the coefficient of self-induction L is varied

while /?, Ct GO, and E are maintained constant,

When L < 77-7 , tan 6 is positive and is an angle of ad-
G co

vance.

becomes less I as z increases .

/becomes greater )

When L > ~ , ,
tan is negative and B is an angle of lag.O GO

6 becomes greater ) T .

\
as L increases,

/becomes less

These changes in the angle of lag or advance and the cur-

rent, due to change in the self-induction, are better seen

from the consideration of a particular case. In Fig. 30 the

values of and / are plotted for various values of L in a

circuit in which

R = 50 ohms, GO = 1000,

C = .55 microfarads, E = 200 volts.

When L = -~ ^
= 1.82, the current has its maximum

O GO

w
value equal to

-^ , and 0. This is a critical point, and

a slight change of L in either direction will cause 6 to reach

a considerable value and the current to fall to a small part

of the maximum value. If L be increased from 1.82 to

1.92, changes from zero to 63, an angle of lag, and the

current falls from 4 to 1.8 amperes. If L be made 1.72,
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becomes an angle of advance of 63 and the current will

be 1.8 amperes. It is thus seen that an exact balance of

self-induction and capacity would be exceedingly hard to

maintain in this case, for a slight change in the self-induc-

tion would cause a large angle of lag or advance and a large
diminution in the current. Just how critical the curves

will be in the vicinity of the point of equilibrium depends

FIG, 30. VALUE OF CURRENT, AND ANGLE OP ADVANCE OR LAG FOR

DIFFERENT AMOUNTS OF SELF-INDUCTION IN A CIRCUIT IN WHICH

R = 50, C = .55, E = 200, < = 1000.

upon the constants of the circuit. The curves will always
be of a form similar to those in Fig. 30, but will often be

decidedly modified by the particular values of R, (7, and GO.

The critical parts of the curves may be more or less marked

according to these particular values.

Fourth. If the capacity C is varied while It, L, o>, and

E are maintained constant.
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When C < y ^ ,
tan is positive, and is an angle of ad-

vance.

becomes less

/becomes greater

1

as C increases.

When C > -j^ ,
tan 6 is negative and 6 is an angle of lag.

becomes greater ) ~ .

\ as C increases,
/becomes less

These changes of current and lag, with the variation in

capacity, are shown in Fig. 31 for a particular case in which

R = 50 ohms,

L = 2 henrys,

ft? = 1000,

E = 200 volts.

FIG. 31. VALUE OP CURRENT, AND ANGLE OP ADVANCE OR LAG FOR

DIFFERENT CAPACITIES IN A CIRCUIT IN WHICH R = 50, L 2,

E = 200, c = 1000.
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The maximum value for the current occurs when C= -7 2
=

Loo

.5 microfarads. This is a critical point in the curve similar

to that in the curves where the self-induction was varied.

Here is zero, and so the current, being in phase with the

impressed E. M. F., has a value of 4 amperes in accord-

ance with Ohm's law. The critical nature of the curves

here is seen by the fact that when C = .55 there is an angle

of lag of 75 and / 1.07
; when C .458, there is an angle

of advance of 75. When C is changed from .5 to .488, the

current falls from 4 to 2.83 amperes and is put 45 out of

phase in advance of the E. M. F.

Fifth. If the frequency is varied while It, (7, Z, and E
are maintained constant, still more marked changes occur

in the values of Zand 0.

When co < ,
tan 6 is positive and is an angle of

VZG
advance.

.}
becomes less

as GO increases.
Z becomes greatei

When GO > --
, tan is negative and is an angle of lag.

becomes greater )

f as GO increases.
Z becomes less

In Fig. 32 the values of the current and angle of lag are

shown for different values of GO in a circuit in which

E = 50 ohms, C = .55 microfarads,

Z = 2 henrys, E = 200 volts.

When GO = = 955, the current has its maximum
vZ C

value of 4 amperes, in accordance with Ohm's law. Here

0. A change of five per cent, one way or the other in

this critical value for GO causes an angle of lag or advance
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of 75, and the current falls to one-fourth of the maximum.

Just how critical the curves are, in the vicinity of this point

60

90

FIG. 32. VALUE OF CURRENT AND ANGLE OF ADVANCE OR LAG FOR

DIFFERENT FREQUENCIES IN A CIRCUIT IN WHICH B 50, L 2,

C = .55, E = 200.

of equilibrium depends upon the particular values of R, C,

and L.

In Fig. 33 is shown the E. M. F. necessary to cause a

constant current to flow in a circuit in which j??, (7, and GO

are constant. In the particular case plotted,

R 50 ohms,

C .55 microfarads,

/ = 1 ampere,
GO = 1000.

As the self-induction is increased up to the value

L = -~ ;
= 1.82, the E. M. F. needed to drive the current

C GO

becomes less and less, and when L = 1.82 the E. M. F.

needed is only 50 volts. As L increases past this critical

value, the value of the E. M. F. needed increases. Except
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very near the critical point, the change in the necessary
E. M. F. is almost directly proportional to the change in

the self-induction, that is, the curve is formed of two straight

lines with a rounded point. This curve is the reciprocal of

1500,

1000..

500

Henrys

FIG. 33. RELATION BETWEEN IMPRESSED E. M. F. AND SELF-INDUCTION

WHEN 1 AMPERE PLOWS IN A CIRCUIT IN WHICH 7? = 50, C = .55,

oo = 1000.

the corresponding curve for current, with E constant and

L variable, as shown in Fig. 30.

THE ENERGY EXPENDED PER SECOND UPON A CIRCUIT IN WHICH
AN HARMONIC CURRENT is FLOWING.

The energy expended in any circuit in the time dt is

the product of the E. M. F. and current at that instant by
the time ;

that is,

dWeidt. [See equation (5), Chap. L]

When the E. M. F. is harmonic the instantaneous value of

it is e E sin cot. The current at the same instant is

i = /sin {cot 0}. Therefore the differential equation of

energy is

0.92) dW ^/sin cot sin {cot
-

0\dt.
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Integrating between the limits zero and T, the time of one

complete period, we obtain

(193) W

Expanding sin {oot 0\, we obtain

rT rT

W Icos I sin
2

optdt ^/sin I sin GJ t cos w t.

/o ^o

sin 2 cot

Replacing sin K> t cos oo t by its equivalent
---~-

,

/ r El sin f*T
W=Elcos8 sitfootdt I fuaZ&tdt.

e/o ^ t/o

Between the limits zero and T the second integral vanishes

T
and the first integral is equal to

-^-.
[See page 37.] The

value of the energy expended per period is therefore

(194)

The energy expended per second is therefore

(195)

that is, the energy per second is half the product of the

maximum E. M. F. by the maximum current by the cosine

of the angle of difference between the E. M. F. and cur-

rent. Since the effective E. M. F. or current is equal to

- times the maximum value, we have
V2

(196) W=l?fco0,

meaning by E and / the square root of the mean square
values oF^. M. Jb

1

. and current.



CHAPTER X.

CIRCUITS CONTAINING RESISTANCE, SELF INDUCTION, AND
CAPACITY.

CASE III. (CONTINUED.) CURRENTS AT THE "MAKE" FOR

AN HARMONIC E. M. F.

CONTENTS: Complete equations for i and q with the complementary
function in the oscillatory form. To determine the constants A' and

$'. To determine the constants A and <P. Complete equation for t

with constants determined. Examples to explain the general equation

in cases of particular circuits. Curves showing the current at the make
for a particular circuit. The phase at which the E. M. F. should be

introduced to make the oscillation a maximum.

IN the discussion of the current equation in Chapter
IX. for an harmonic E. M. F., it was stated that after the

lapse of a very short time the exponential terms, equation

(181), become inappreciably small and can be neglected,

and the discussion of the equation there given only applies

after the current has been flowing for a short time. It is

proposed in this chapter to investigate the effect of these

exponential terms in modifying the current during the very
short time after the "

make," or, in other words, after the

harmonic E. M. F. is suddenly introduced into the circuit.

The E. M. F. may be introduced at any point of its phase,
that is, it may be zero or may have its maximum or any
intermediate value, but, in any case, the complete equations

(181) and (182) show just what happens, provided we de-

termine the constants c
l
and c

a
of the complementary func-

144
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tion, so that they correspond to the particular hypothesis

made.

It has been noted (120) that the complementary func-

tion c, e Tl + c
2
e

r' may be written in another form, viz. :

Rt

This latter form must be used when we have the relation

4Z > R*C, for, under this hypothesis, the time-constants

T7

,
and T, of the first form become imaginary. To make

this supposition is equivalent to saying that the character

of the discharge from the circuit is oscillatory [see Chap-
ter VII.]. Inasmuch as this relation 4 L > IFOis true for

most ordinary circuits in which Z has an appreciable value.,

and since the results obtained are rather more interesting

under this supposition than under the supposition that

4Z < R*Ci .which would give "dead beat" discharge, we
will confine our attention to the oscillatory case only. The

plan to be followed in the discussion of this subject will be

to determine the constants A and $ of the general equa-

tion, and write the general result. The application of this-

result to a particular circuit will then be made, and curves

drawn showing the current as it starts in this circuit before

it has reached its final harmonic form.

The general equation for current, under the assumption
made that 4 Z > R* C, may be written

E - -

tan
_,
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where A and $ are the constants of integration to be deter-

mined and are each of them real. Likewise, the equation

expressing the quantity of charge on the condenser at any
moment may be written [see (182) and (123)]

(198) q = -
~
^
----

g cos
j

Got + tan
- 1

Rt
.

(ln
j

V1LC-&C*
Sln

7b determine the constants A' and $'; Remembering the

relation d q = i d t, we may differentiate (198) and write

da E
<199> *= =

Equating (199) with (197), we obtain the relations

(200) A =

(201) s #=#'-tan
- T> n

-fi \j

For simplification make the following substitutions :

(202) 7= ,

*
[See (191).]
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I L Gd

(203) i/>
= <at + tan

,oru\ V1LC-WC 1

a ~-

The frequency of oscillation is
^ ,

and the period .

Then we may write, after substituting in (197) and (198)

the values of A' and $>' as determined,

_Rt

(205) i = /sin $ + A e
2L

sin {at + $\.

Rt
2~L

(206) q = - - cos '/> + A VL Ce

sm

To determine tJie constants A and <: In these equations

time is counted from the point when the impressed E. M. F.

is zero. Let t
l
be the time when the E. M. F. is introduced.

We know then that the current and the charge of the con-

denser are each zero at the time t
l , the condenser having

no initial charge. These conditions alone, namely, that

i = and q = when t = t
l ,

are sufficient to determine the

constants. In equations (205) and (206) make i 0, q =
when t = t

l , and call ^, the value of $ when t = t
r , and we

have

(207) = /sin^-f-^e
2fj

sin \at t -f $\.

T _*
(208) = - - cos fa + A VL Ce

2L

CO
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Eliminating A between these equations, we obtain

Substituting this value of # in (207),

,

,01 AX A _ T+
(210) A- -le

sin cot

This expression for A may be reduced by simple trigo-

nometrical operations to the form

Substituting these values of A and $ in equation (197), we

may write the complete solution with constants determined,

S // ,x i-i fsin < a (t t.) + cot" 1

<

V

J

There are several general conclusions which can be made

in interpreting the meaning of this equation. It is evident

that there will be an oscillation of the current when the

E. M. F. is first introduced, which gradually dies away, the

rate of dying away depending upon the exponent of e in the

equation or, in other words, upon the time-constant of the

2 L
circuit, namely, -75- The initial value of this logarithmic

decrement curve, that is at the make when t = t
1 , is ex-

pressed by the coefficient of e in the equation. It is evident
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that this initial value depends upon the value of i^ l
for its

value, or is a function of fy^. The initial value of the log-

arithmic curve has, then, a different value for every value

of tp lt i.e., for every point of the phase of what the current

would have been if it had started out at the make as an

harmonic current having the same phase difference with

the E. M. F. as it finally assumes. Again, at the time t = 1
1

the value of the last term of the equation becomes /sin ^,.

This will be evident upon replacing the coefficient of e by
its value given in (210). The first term becomes /sin ^ ,

when t = t
l ,
and the two terms together show that the

equation makes the value of the current zero at the time t
lt

that is, at the time the E. M. F. is introduced.

In order to show the meaning of this equation more

clearly, a particular example will be assumed. Suppose
we have a circuit with a resistance of 50 ohms, a self-induc-

tion of 2 henrys, and a capacity of .55 microfarads, all in

series. Such a circuit would correspond nearly to the fine

wire coil of a small 10-light Westinghouse transformer

connected in series with a condenser of .55 microfarads

capacity. Let an E. M. F. of 100 volts (maximum value),

having a periodicity of 159, be impressed upon the circuit
;

that is, the angular velocity GO = 2 TT x 159 = 1000, approx-

imately. We have, then, with these values assumed,

E = 100 volts (max.) = 100 X 108 C. G. S. units.

E = 50 ohms = 50 X 109 C. G. S. units.

L = 2 henrys = 2 X 109 C. G. S. units.

C = .55 microfarads = .55 X 10- 15 C. G. S. units.

o = 1000.

2 L 4 X 109

= =-

/ = .53 amperes (max.). [See equation (202).]

B = - 74 30'.

a 955 = 2 TT x frequency of oscillation = 2 7t x 151.

[See (204).]
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The equation for the current in this particular case is

(213) i = .53 sin ^ .477 V.I sin
3

fa + .0137 sin 2 ^+ 1

.08
sin

{
955 (t

Curve III., Fig. 34, represents the plot of this equation

when the particular value of ^, is 30. This means that

the E. M. F. is introduced into the circuit at that particular

time at which the normal current curve is 30 from its zero

value. The value of the coefficient of e when ^ is 30 is

.495, and the equation reads

t-tj

(214) i = .53 sin $ .495 e
-08

sin
{
955 (t tj -f x }

Here ~x.
stands for angle of lag expressed in equation (212),

and is not expressed in figures inasmuch as it is not neces-

sary to know it in order to draw the curves, because the

phase is determined by the fact that we know the distance

0' A', Fig. 34, it being equal but of opposite sign to the

distance A. It will be noticed that the initial value of

the logarithmic decrement is nearly the same for any value

of Jp 1
in this particular case. Moreover, as it happens, the

initial value of the logarithmic decrement is nearly the

same as the maximum value of the current I. Curve I. is a

sine curve representing the first term in equation (214), and

curve II. a sine curve with logarithmic decrement repre-

senting the second term in the equation. The current

curve, III., is the sum of curves I. and II. After about

one-tenth of a second, curve II. becomes inappreciable and

the current follows a simple sine curve.

As a second example, let us consider the same circuit

as before. But now suppose the frequency is just half

what it was in the first example, namely, 79.5, or that

co = 500. Furthermore, suppose the E. M. F. is such that

it will send a maximum current of .5 of an ampere through
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the circuit. It will be found, upon calculation, that the

E. M. F. must be 1320 volts maximum. With these values,

then,

E = 1320,

.# = 50,

L =2,
C = .55,

co = 500,

T = .08 seconds,

/ = .5 amperes,
e = 88 55', tan 6 = 52.8,

a = 955,

the equation for the current becomes

(215) t = .5 sin # - .955 V- .725 sin
8

ft+ .0069 sin 2 ft+ 1

e
' 8

sin {955 (*

The plot of this equation, when ft is taken equal to 180

(that is, the E. M. F. is introduced when the normal current

curve is zero), is shown in Fig. 35. It will be noticed that

the initial value of the logarithmic curve has considerable

variation according to the particular point of time at which

the E. M. F. is introduced. This variation is represented

in the curve IV., Fig. 35. The initial value of the logarith-

mic decrement at or 180 is almost twice as much as the

955
maximum value of the current 7, their ratio being

'* =- .M
The equation, when ft is 180, reduces to

Ct-t,)

(216) t = .5sin0-.955e
-08

sin{955(*
-

*,)+ *}

In each of the above examples the current follows the

sine law in about one-quarter of a second after the periodic

E. M. F. is introduced, during which time somewhere in the

neighborhood of forty oscillations have been made.
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The phase at ivhich the E. M. F. should be introduced to

make the oscillation a maximum : It may be interesting to

inquire at what point the E. M. F. should be introduced

O H H5

i e &
P fc <1

o E

-
fi

II
CO

g

K I

into the circuit to render the effect of the oscillation a

maximum. This point may readily be found by referring
to equation (212). The coefficient of e becomes a maximum
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(for a variation in ^), when the quantity under the radical

sign is a maximum. Differentiating the quantity under the

82 30

FIG. 36. SHOWING HOW TO FIND GEOMETRICALLY THE ANGLE #t

WHICH MAKES THE EFFECT OF THE EXPONENTIAL TERM A MAXIMUM.

radical, then, with respect to t
l9 and equating to zero, we

obtain

(217) (L Co? - 1) sin 2 ^+ E Con cos 2^ = 0.

Whence tan 2 ib
l
= = T n **1 *L L> GO

But it will be remembered that [see equation (190)]

1 - Z Co?
tan 6 = EC
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Hence tan 2^>, = cot 6 = tan
^
~ ~~

^j

(218) or *, = -.

And since #>,
=

o><, -|-
6 [see (138)], we find

(219) <^I= J-~.

Suppose is an angle of lag of 75, as in the first example
n 75

cited, then its sign is negative and ^, = -r +~o~=-82 30'

for a maximum. If 6 is -f- 88 55', as in the second exam-

ple, 0, = 45 44 27'.5 = 32'.5 for a maximum.

The curve IV., Fig. 35, shows that the maximum point

is nearly at the position where *p
= 0, and thus agrees with

this result. The exact form which the current curve

assumes at the introduction of an harmonic E. M. F. depends

upon the time of its introduction and the constants of the

circuit. The curves shown in Figs. 34 and 35 give an idea

of what may be expected in other cases. In all cases, after

a very few periods, the current reaches the simple sine

form.

The current which flows upon making a circuit which

contains resistance and self-induction, but no capacity, is

shown in Fig. 15, Chapter III., to which the reader is

referred.



CHAPTER XI.

CIRCUITS CONTAINING RESISTANCE, SELF-INDUCTION,
AND CAPACITY.

CASE IV. ANY PERIODIC E. M. F.

CONTENTS: Fourier's theorem. General equations for i and q with any

periodic E. M. F. If the self-induction and capacity neutralize each

other at every point of time and the current is therefore the same as if

both self-induction and capacity were absent, the impressed E. M. F.

must be a simple harmonic E. M. F. If the heating effect, or any
effect which depends upon fedt, in a circuit, is the same when the self-

induction and capacity are present as it is when they are absent, the

impressed E. M. F. must be a simple harmonic E. M. F. Various

types of current curves. When curves are not symmetrical, although
the quantity flowing in the positive direction is equal to the quantity

in the negative direction, yet iheffidt effect will generally be different

in these two directions. Illustration from a particular curve. Alter-

nating-current arc-light carbons.

IF we suppose that the impressed E. M. F. is made up
of a number of simple harmonic E. M. F.'s added together,

the impressed E. M. F. may be written

(220) e = E, sin (6, GO t + 0,)+ Ey
sin

(ft,
GO t+ 3)

+ E, sin
(l>a

Got + 8
3) -fete,

and, therefore,

de
-rr = Et

b
l
GO cos (b l

cot + #,) + E9
6
2 GO cos (6, cot + a) -f etc.

156
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Expressed as a summation, we have

(221) e = ^>E sin (b oo t.+ 0) =f(t).

(222) ^ = GO>b cos (b GO t+ 6)
= /' (Q.

In this summation it is to be understood that E and 6 take

in succession any values, fractional or integral, but that b

may only have positive integral values as the E. M. F. is

supposed to be periodic, and consequently the periods of

the component sine-curves must be commensurable. It

was shown by Fourier, in his treatise on the Analytical

Theory of Heat, published in 1822, that such an expression

as (220) or (221) represents any single-valued periodic func-

tion whatever, and is therefore an expression which repre-

sents any possible E. M. F. whatever. If (222) is substituted

in the general equation for current (99), and (221) in the

general equation for charge (100), it will be found, upon

integrating^ that each component term in the E. M. F. gives

a term in the current or charge similar to that given in

equations (181) and (182) in Case III., and consequently the

resultant current may be expressed as a summation thus :

(223) i =
|J>

E - sin
|
b GO t + 8

V h fl / 7~> l I T 7 I

and the charge

(224) g= 3 fina ( h r^t. -U
^r I t i V* I

>

i G0 2*.

+tan ---+ c' e



158 CIRCUITS CONTAINING

In these sums for i and q there must be as many terms in

each as there are in the expression for the E. M. F., and

the values of E, b, and 6 must be the same in corresponding
terms. These equations express the current and charge in

a circuit whose E. M. F. is any periodic E. M. F., as in equa-
tion (221).

If the self-induction and capacity neutralize each other at

every point of time, and the current is therefore the same as if

both self-induction and capacity were absent, the impressed

E. M. F. must be a simple harmonic E. M. F. In the discus-

sion of Case III., where the E. M. F. was harmonic and the

resulting current was shown to be harmonic also, it was

pointed out that if the relation & = -
existed, the

vL C
current was the same as if there was no self-induction and

no condenser in the circuit, and the same as if it simply
followed Ohm's law. This was shown by substituting the

relation GO = ;== ,
or 77 L GO= 0, in the current or

v L C ^ w

charge equations (181) and (182) and neglecting the com-

plementary function. Those equations, with these substi-

tutions, become

. E
i = -= sin GO t.

E
q = -75 cos co t.H GO

It is seen that the current and charge are the same at

every point of time as if the self-induction and capacity

were absent. Now, since the current is the same at every

point of time, the effects of this current will be the same
;

namely, the quantity which flows in a half period, being
jr
.2

i d t = Q, is tlje same as when there is no self-induction
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arid capacity, and the energy expended in the circuit in

performing work, or in heating effects, is likewise the same,

being proportional to / i
8 d t.

In order to ascertain whether some similar relation be-

tween self-induction and capacity would cause them to

neutralize each other when the impressed E. M. F. is

not a simple harmonic function of the time, consider the

case where the E. M. F. is composed of two parts, each a

sine-function of the time. Suppose

(225) e = E, sin a GO t + E^ sin boot,

where a and b are integers. In the circuit there is re-

sistance, self-induction, and capacity. Then at any time

the value of the current is [see (223)]

(226) i =

sin

Suppose the self-induction and capacity have the relation

a u) Then they will neutralize each other in
M -Li O

the first term of the above expression for the instantaneous

value of the current. But in the second term the relation

is necessary to cause the self-induction and_
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capacity to neutralize each other. Now, if one of the above

terms is changed by the introduction of self-induction and

capacity, while the other term is unaffected, the value of

the current which is equal to the sum of the two terms must

be changed. It therefore follows that neither the relation

a a>= _ nor b GO _^ will cause the self-induc-
v .L C/ v JL G

tion and capacity to neutralize each other when introduced

into a circuit containing an impressed E. M. F. composed of

two simple harmonic E. M. F.'s with angular velocities a GO

and b GO, respectively. If a b, the two terms in the expres-

sion for the instantaneous value of the current may be writ-

ten as one, and we have a simple harmonic function of the

time. The relation a GO= b GO= will then cause the

self-induction and capacity to neutralize each other.

If EI = 0, or if EI = 0, then we have a simple sine-func-

tion, and the relation bao= , or a GO=
, re-

vL C VL G
spectively, will cause the balancing of the self-induction

and capacity.

In order to ascertain the conditions under which there

may be self-induction and capacity in a circuit, just neutral-

izing each other, so that the instantaneous values of the

current will be the same as though there were no self-induc-

tion and capacity in the circuit, we will consider the general

differential equation of E. M. F.'s

[See equation (87).] We wish to ascertain the conditions

by which the current will be the same as when there in

neither self-induction nor capacity, that is, the conditions
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a

by which i

'

-75 and e = R i, according to Ohm's law.

Substituting in the above equation, we have

(227)

, . / idt
di

,
J

G

This is the same as saying that the E. M. F.'s of self-induc-

tion and capacity are equal and opposite. By differentia-

tion,

d* i idt

Multiplying by -TT ,

id i \ Id i\ idi

\dil
d
\di)

= ~Tc

By integrating we have

&t

di

The variables may be readily separated, thus :

(228)

The integral of (228) is obtained by the formula of integra-

tion,

/
dx

,
x= sm'1 -,
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Upon integration it becomes

Taking the sine of each member and writing c' for VcLC,

(229) t^c'si

The only two variables in this equation are i and t, and

the current is seen to be a sine-function of the time. When
the current is a maximum, the sine is unity and we have

If the time is reckoned from the point where the current is

zero, t = when i = 0, and we have

C,=:0.

Substituting these values for the constants c' and c,, we
have

(230) i

In an harmonic function, as this, the coefficient of the vari-

able t is the angular velocity which we designate by &?.

Equation (230) then becomes

(231) i = /sin oot.

We have, then, the necessary conditions by which the self-

induction and capacity will just neutralize each other at

every point of time. The current must be a simple sine-

function of the time, and the self-induction and capacity

must have such values that GO= -
. By no other con-

VL C>

ditions, with self-induction and capacity in a circuit, can
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the instantaneous values of the current be the same as

though the capacity and self-induction were absent.

If the heating effect, or any effect which depends upon

I i* d t, in a circuit is the same when the self-induction and

capacity are present as it is when they are absent, the impressed

E. M. F. must be a simple harmonic E. M. F. Since we have

found that there is 110 possible relation between L and C
t

so that the instantaneous values of the current are unchanged

by their introduction into a circuit with an impressed
E. M. F. which is not an harmonic function, it is interesting

to inquire whether any relation can be given L and C so

that the energy spent in the conductor in a given time is the

same before as after the introduction of L and C.

Before attempting to investigate such a relation, it will

be well to first consider some different classes of current

curves, then ascertain the / t
a d t effect for some particular

current curves, and afterwards consider the energy of any

periodic curve whatever.

Fig. 37 represents a curve which has an equal area above

and below the axis every period. This means that the in-

FIG. 37.

tegral jidt for one period is zero, that is, the quantity of

electricity which flows each period in the positive direction

is equal to that which flows in the negative direction.

Moreover, if the lower half of the current curve is inverted
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and represented by the dotted line, it is an exact repetition

of the first half of the curve. This curve may represent
the type of current curves given by alternating generators

in circuits with resistance, self-induction, and capacity ;

for, it is evident that, as the armature revolves, the number
of lines introduced into the circuit every period equals
those taken from the circuit. Now, the quantity of current

which flows is strictly proportional to the change in the

number of lines threading the circuit. This is equivalent

to saying that the quantity which flows in the positive direc-

tion is exactly equal to the quantity flowing in the negative

direction, or the total algebraic quantity per period is zero.

Now, if the generator is exactly symmetrical, the current

curve in the second half of the period is, if inverted, an

exact repetition of the curve in the first half. Any irregu-

larities in the symmetry of the machine might cause slight

differences in the two parts of the curve, but hardly enough
to prevent this curve from representing the type of curves

given by alternating machines. During every complete
revolution of the armature, the total algebraic quantity of

current flowing must be rigorously equal to zero, no matter

how many irregularities there may be in the machine ; for,

the number of lines introduced into the circuit exactly

equals those subtracted from the circuit, because after a

complete revolution the number of lines is the same as at

the start. It is possible that adjacent positive and negative

areas may be unequal in a multipolar machine, due to some

irregularity in the machine, but after a complete revolution

of the armature the sum of the positive areas equals the

sum of the negative.

Fig. 38 represents a current curve which has equal areas

above and below the axis every period, but the negative

area, when inverted, is not necessarily a repetition of the

positive area. This represents the type of current curve
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when there is a non-leaky condenser in the circuit, since

the total algebraic flow here is necessarily equal to zero.

FIG. 38.

Fig. 39 represents a current curve in which the negative

area is neither equal to the positive area nor symmetrical

with it when inverted.

FIG. 39.

It is interesting to inquire whether the / ** d t effect is

the same in a circuit while the current flows in the positive

direction as it is while flowing in the negative direction.

We can see that it is the same for a current of the

type represented in Fig. 37, for, squaring the ordinate at

each point and drawing a new curve, 5, Fig. 40, the / i* d t

effect is proportional to the areas of this new curve. Since

the current curves a, a are exact repetitions, these areas, &, &,

are identical, and the / i* d t effect is the same when the

current is positive as it is when negative.

Let us inquire how this is for a current of the type of
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Fig. 38, where the areas are equal, that is, the Cidt is the

same for positive as for negative current, but the negative

\

FIG. 40.

part, when inverted, is not an exact repetition of the positive

part. In Fig. 41 the areas between the axis and the cur-

FIG. 41.

rent curve a, a are equal for each half period. The curve

b, b is drawn by squaring each ordinate of the curve a. The

areas b, b represent the / i* d t effect, and we wish to find

whether they are equal.
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Illustration from a Particular Case. To show that this

A a d t effect is not necessarily the same when the current

is positive as when it is negative, it will suffice to take one

Time

FIG. 42.

particular case of a current curve. Suppose the positive

curve is a parabola (Fig. 42) whose equation, referred to

as an origin, is

(232) 3.

Suppose that the negative curve is a sine-curve wh*e equa-

tion, referred to 0" as origin, is

(233) i = f V3 sin t.

It is easily shown that the areas of these curves are equal.

Area parabola = f [base X height].

One-half of the base of the parabola is found by
i = in equation (232) and finding the value of t.

Therefore, Jbase = V3,

Base = 2 VS.
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The height is found by making t = and finding the value

oft.

Therefore, Height = unity.

(234) Hence Area parabola = f [base X height] = f 4/3.

The area of the sine-curve is equal to the mean ordinate

multiplied by the base ; therefore

Area sine-curve = mean ordinate X TT.

The mean ordinate of a sine-curve equals twice the maxi-

mum ordinate divided by n. [See p. 37.] By equation (233),

the maximum ordinate equals 4/3 and, therefore, mean

ordinate = f n 4/3, and

(235) Area sine-curve = f 1/3",

which is the same as the area of the parabola given in (234)

above. Moreover, the tangents of the angles which these

two curves make at the point O with the axis are equal,

and the curves consequently blend into one another with.

out any abrupt change in continuity. This is easily shown

as follows : Differentiating (232) and (233) respectively, we

have

(236) ^i==-f$:

(237) = % V3 cos t = tan B f
.

Making t = 1/3 in (236), we have the tangent of the inclina-

tion of the parabola at the point 0. Making t = n in

(237), we have the tangent of the inclination of the sine-

curve at the point 0. These values, it is noticed, reduce

(236) and (237), respectively, to tan 6 = tan 6' = . $ 4/3,

which is the value of the tangent of inclination of either

curve at the point 0.
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It remains to find the /
'a d t for each of these curves.

By transposition, the equation of the parabola (232) is

- 1 -

By squaring,

Ci*dt =

Integrating between the limits 4/3 and 1/3, we have

4 V3 3 2 i/3
5 16 -= 2 /- _- _ =:_ i/3.

This is the fi*dt effect for the parabola.

For the sine-curve the equation is

i = i/3 sin .

Integrating between the limits and ?r,

4

This gives the A2
c? ^ effect for the sine-curve. Hence we

find that, although the area of the current curve is the same

for the positive and the negative current that is, the total

algebraic quantity of flow is zero yet the / t
2 d t effect is
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different in the positive and negative directions. In the

case supposed, the ratio of the two effects is

= 1.135.

if 4/3

This may afford an explanation for the fact that in many
cases one carbon of an alternating-current arc lamp is con-

sumed more rapidly than the other, depending upon the

way it is connected up.

General Proof. Let us now return to the consideration

of the energy in a conductor when any periodic E. M. F. is

applied, and ascertain whether there is any condition by
which self-induction and capacity may be introduced into

the circuit without changing the energy or I i*dt effect.

The energy expended in a conductor is proportional to

fi*dt. When the E. M. F. in the circuit is

e = ^sin (b GO t + B\ [see (221),]

E,b, B

which represents any periodic E. M. F., it has been shown

that the current is

(238) i =

neglecting the complementary function [see (223)]. And,

when there is neither self-induction nor capacity, the cur-

rent is

^* T?

(239) i.
= -- sin (b GO t + 6).
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If we put

(240) 1= E

(241)

and

we may abbreviate (238) and (239) as follows

(242) i = ^> I sin (6 00 f + a).

(243) * = ^> / sin (b GO t + 0).

The subscript indicates the absence of self-induction

and capacity. Remembering that the energy is proportional

to / t* d t, we have

(244)

and

(245) W = fi* d t =

where W is proportional to the energy expended in the

circuit with L and '(7, and W bears the same relation to

the energy when they are absent. In order to find wha^
relation must exist between L and C to cause the energy

expended during a certain time to be the same in both

cases, we must integrate (244) and (245) between the same

limits of time, and equate them. In order to simplify (244)

and (245), express as follows :

(246) r^

(247) TT ^y^/o

/

sin(6 1^+^)+/o

//

sin(6,G!9^+6',)-f//"etc.]
dt.
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Since the square of any polynomial is equal to the sum of

the squares of each term separately plus twice the product
of each term by every .other term, we have as a result to

find the integrals of only two forms, thus :

(248) sm* (bG*t + a)dt, and

(249) y*sin (6, GO t + aj sin (&,< t + #,).

If the limits are taken from t to t T, a complete

period, the E. M. F. being periodic with a period T = -

it can be shown that all the integrals of the form of (249)

vanish
; for, expressing the sine of the sum of two angles

in terms of the sines of the angles themselves,

(250) sin (&,< -\- a^ = sin b^oot cos or, + sin or, cos boot,

and

(251) sin(&2
a? t -}-

ar
a)
= sin b^oo t cos or, + sin or, cos 6

2
GO t.

Multiplying (250) and (251), we obtain terms of the follow-

ing forms :

(252) sin b, GO t cos 6
a
GO td t,

(253) J cos btGotcosb^Gotdt

(254) J sin b
l
GO t sin 5

2 GO td t,

which are to be integrated between the limits and T, or

. Substituting for b^cot, ax, and for &
2o?, bx, we have

made the integral in (249) depend upon the three forms,

(255) / sin a x cos b x d x,
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/27T
cos a x cos bxdx,

,

(257) / sin a x sin bx dx.
t'o

To show that each of these three forms vanishes between

the limits zero and 2 it, we can reduce as follows :

(258) I
sin ax cos 6#cfa = af sin(a -|- 6) ced cc

-}~ o /*

cos (a b)

/'
1 />

37r 1 /cosaxcosbxdx =
y / cos(a -}- b)x d x -}- -~ I

I 27

cos(a

Sir 2

(260) r sin aa? sin 6a?c?cc =
^ / cos(a b)xdx ^ i

2 -
in(a-6)a; sin(a n

J
= '

Since, therefore, the integral in (249) is zero in every case,

we have only to find the integral expressed in (248). This is

2_w
2w

/"-"
"rb&t-l-a

sin
t

(bcot4-a)dt ^^
ol_ 2! GO

1 "1 it T
TT sin 2 (6 oot+ a) = - = -~
45*0 co 2

which is obtained by the formula

r . x I
I sin

8 x d x = T sin
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upon replacing x by b GO t -[- a, and dx by b&dt. Returning
to equations (246) and (247), and replacing the value of the

integral in (261), as determined, we have now found the

values of W and TF in equations (246) and (247) to be

W
=[/'

1

+ 7' + 7'"" +
etc.]|,

and W =
[/.'*

+ J."
1

+ //"' +
etc.] |,

or

Equating TFand TF ,
as before explained, to determine the

condition necessary to make the energy the same, we obtain

(262)

which, written in full, is

(263)

[See (240) and (241).] This equation expresses the relation

which must be true if the / i* d t effect is the same when

the self-induction and capacity are present as it is when

they are absent. This equation expressed without the sign

of summation is

(ORA\
(264)

E* E'
etc. = - + -- etc.
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It is evident that the parenthesis in the denominator of each

term of the first member, being squared, is always positive

no matter what values L and C may have. Each term,

then, of the first member is less than the corresponding
term in the second member, unless the expression in the

parenthesis is zero. And in order that the first member
shall be as large as the second member, each parenthesis

must be separately eaual to zero ; that is, we must have

VLC'

and b
3
w =

,
etc.

VI. C

Therefore
fc,
= 6

2
= b

z
= etc. But this condition is equiv-

alent to saying that the impressed E. M. F. can only be a

simple harmonic E. M. F., and that we must have the rela

tion co in order to have the Ci^d t effect the same

in a circuit when the self-induction and capacity are pres-

ent as when they are absent. There is, then, no relation

between the self-induction and capacity which can be given

that will make the A'
8 d t effect the same in a circuit when

they are present as when they are absent, if the impressed

E. M. F. is not an harmonic E. M. F.



CHAPTER XII.

CIRCUITS CONTAINING DISTRIBUTED CAPACITY AND SELF
INDUCTION. GENERAL SOLUTION.*

CONTENTS: Derivation of the differential equations for circuits containing
distributed capacity only. This equation extended so as to represent
a particular case of distributed capacity and self-induction. Differ

ential equation for E. M. F. is of the same form as that for current.

The general solutions of the differential equations. Particular

assumption of harmonic E. M. F. Constants of the general equation
determined under this assumption; first, from the exponential solu-

tion; second, from the sine solution. Current determined from the

E. M. F. equation.

IN former chapters the only capacity considered has

been that due to a condenser placed at some particular

point of the circuit, thus introducing an actual break in the

continuity of the conducting metal. It is possible to have

the effects of capacity without thus introducing a condenser

into the circuit. The problem of the propagation of the

electric current in a cable containing distributed static

capacity was first discussed by Sir William Thomson, and

* The purpose in writing this book has been to give concisely sucli

principles as are necessary for a clear understanding of alternate-current

phenomena, and to make the work one connected unit, dealing with the

various problems in turn, so that no portion could be omitted without in-

terfering with the logical sequence. This and the following chapter con-

stitute, however, a separate discussion which may be read alone, and

without which the rest of the book is logically complete.

NOTE. The authors' thanks are due to Prof. Merritt for calling attention to certain

discrepancies in the signs of some of the equations from 273 to 317 in the first edition.

These discrepancies did not affect the results and have been rectified in the present

edition.

176
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afterwards by Mascart and Joubert,* Blakesley, t and

others. The solution for the variation in the current and

potential at different points of a conductor containing self-

induction as well as distributed capacity was given by the

authors in the American Journal of Science \ and some of

the effects of the self-induction noted, and a fuller dis-

cussion was given in the London Electrician.^

When a current of electricity flows in a wire, the po-

tential of the wire at any point is generally different from

the potential of the surrounding medium, and in order

that this potential may be different it is necessary that the

exterior surface of the wire should become charged with a

certain amount of electricity. A portion of the current,

then, as it flows along the wire, is used to charge the sur-

face of the wire. Indeed, the wire must be charged with

its proper amount before the current can flow on to more

distant parts of the circuit. It is evident, then, that the

larger the capacity of the wire to hold a charge, the greater

will be its effect in modifying the flow of current. The

capacity per unit length of the wire (the wire being re-

garded as one plate of the condenser) depends upon its

superficial area and upon the thickness of the dielectric

(usually between it and the conducting earth near
it),

as

well as upon its nature. In Fig. 43 is represented the

longitudinal section of a cable, A being the conducting wire

and BB the insulating sheath around it. Suppose it to

be submersed in water ; the other conductor is the water,

which, with the wire, forms the condenser.

Let the capacity of a unit length of the wire be denoted

by (7, and the capacity of an element PQ, whose length i&

* Mascart and Joubert, Le9ons sur 1'electricite et le magnetisme, Vol. I.,

233.

f T. H. Blakesley, Alternating Currents of Electricity, Chap. VIII.

% Vol. XLIV., page 389.

Vol. XXIX., pages 619 and 634.
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dx, by Cdx. Let R denote the resistance of a unit length
of the wire. The resistance of the element PQ is Rdx.
Suppose a current i is flowing across the section of the

wire at P in the positive direction indicated by the arrow.

Let the potential of P at that instant be denoted by e.

FIG. 43. LONGITUDINAL SECTION OF CABLE.

Since the current always flows from the higher to the lower

potential, the potential at Q, the other end of the element,

must be less than that at P, and the potential therefore

diminishes in the positive direction. This fall of potential

de
from P to Q is denoted by ^ dx. By Ohm's law the

Cu X

current i, at any moment through the element PQ, equals
the difference of potential divided by the resistance, and

is, therefore,

de

(265) i = - dx
dx Ide

Rdx
~ Rdx

If the current remained constant, having this value i all the

time, the potential of the element and its charge would

continually remain the same, and the flow of electricity

across the section Q would be the same as that at P, since

as much must flow out from as into the element, unless the

charge of the element be changed. Now, considering that

the current does not remain constant but changes every

moment of time, the potential e of the element, and conse-

quently its charge, must change with the time. When the

charge changes* it means that more electricity is flowing
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into than out from the element, or vice versa, and conse-

quently the flow of current across P is different from that

across Q by just such an amount as the element gains or

di
loses. The current at Q is then denoted by i -\- -= dx.

Let the quantity flowing across the section P, in the

time d t, be denoted by d Q, and that across the section Q
by d Q d q, where d q is the change in the charge of the

element in the time d t. The quantity of electricity flowing

across the section P is equal to the current flowing at P
multiplied by the time

;
that is,

(266) dQ = idt, or ^ = i.

Similarly the flow across Q is the current flowing at Q
multiplied by the time

;
that is,

(267) d Q dq = (i + ^d xjd
t.

Subtracting (267) from (266), we obtain

(268)
_

dt dx

This equation may be interpreted to mean that the rate of

change of the charge on the element is equal to the differ-

ence of the currents flowing into the element and out from

it. We might at once have written this equation from this

consideration.

The charge of the element, as of any condenser, is equal

to its capacity multiplied by its potential. The charge

being denoted by q, the potential by e, and the capacity, as

stated above, by Cdx, we have .

(269) q= Cedx.
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The rate of change of the charge with the time is, by dif-

ferentiation,

Equating this result to equation (268), we have

(271) =
dx dt

Equations (265) and (271) are the differential equations
which are sufficient to determine the problem of the propa-

gation of the current along a cable containing distributed

capacity such as that described, when the impressed
E. M. F. of the source is known. The solution of these

equations may be obtained for the most general case, al-

though the arbitrary constants of integration can only be

determined in certain particular cases where the impressed
E. M. F. is known.

When the impressed E. M. F. is harmonic and equal to

e = E sin GO t, the arbitrary constant may be found.

These two differential equations may be expressed as a

single equation by differentiating (265) with respect to x

and equating to (271), thus :

(U_ I d*e

dx~
"

TZ dx*

d* p fJ f>

(272) and, therefore, -?=
CR-jj.

In the foregoing discussion no account has been taken

of the self-induction of the circuit, but it necessarily has a

certain effect upon the flow of the current which it would

be well, if possible, to consider. The effect of the self-

induction must be felt as a back E. M. F. opposing the

current and depending upon its rate of change. We shall

assume that the back E. M. F. per unit length of the con-
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ductor is equal to the rate of change of the current, multi-

plied by a constant
;
that is, it is equal to L -T-- In some

cases this assumption may approximately represent the

true effect of self-induction, and it is thought that this par-

ticular assumption may show the nature of the effect of

self-induction even in cases where the assumption is not

justifiable.

Instead of leaving equation (265) as it stands, therefore,

without taking into account the effect of the back E. M. F.

of self-induction, we may introduce this effect into the

equation by subtracting from the difference of potential

de
between P and Q, viz., ^ d x, the internal E. M. F. of

c(/ x

self-induction, L-^rdx, and so may write, still in accord-

ance with Ohm's law,

_

. _
"
dx

ax ^dt a
_!_

de Z di

Rdx
~

Rdx
~

R dt'

The relation in equation (271) is not changed by the con-

sideration of the self-induction, and these two equations,

(271) and (273), are sufficient to determine the problem of

the flow of current, taking into account both the capacity

aiid self-induction. These equations, now containing four

variables, may be expressed as twa differential equations

containing three variables by eliminating first i and then e.

After transposing and arranging, we may write (271) and

(273)
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fj

Operating upon (274) by -TI, that is, differentiating with

respect to t, we obtain

Operating upon (275) by -j-
-=-

, we find

Id'e
d
(dJ

From (276) subtracting (277), we have

l d'
e Rdi

Substituting here the value of j , namely, C -vr ,
in

(274), we eliminate i and finally have for the differential

equation of potential

(279)v ' dt

To eliminate e from (274) and (275), operate upon (274)

by -j ,
and upon (275) by C-j-:, and we have

cLx (ji t

(281) and
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'

'Subtracting (281) from (280), we have the differential

equation for current

It is evident from the similarity of equations (279) and

(282) that the integral current equation will be the same

as the integral potential equation, except for the arbitrary

constants that enter in integration.

To FIND THE SOLUTIONS OF THE DIFFERENTIAL EQUATIONS.

Assume that the solutions of the pair of differential

equations (274) and (275) are
,

v

mx + nt

(283) e = k e

(284) and i = e

where m, n, and k are constants which must be determined,

and x is the distance from the source of E. M. F. These

constants may be determined by differentiation so that the

equations satisfy the differential equations (274) and (275),

and are, therefore, correct solutions. Differentiating (283)

and (284) with regard to x and t, we obtain

d 6 , mx+ n t

- = m k :

dx

~de , ~ mx+nt

dl mx+ nt

j = me ;dx

di mx + nt
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'.Substituting these values in (274) and (275), we obtain the

.simultaneous equations

(285) nkC+m = 0,

(286) and mk + Ln + fi = 0.

If these equations are satisfied, the differential equations

are likewise satisfied. Solving for m and n, we find

(287) m = - -

(288)

Substituting these constants in (283) and (284), we have

R

(289) e = ke Ck*~L

r (t-Ckx)

(290) and i = e
c]

These equations are solutions of equations (274) and

(275), and they may be easily verified by differentiation.

But a more general solution might be obtained by assum-

ing the E. M. R, e, to be a sum of several terms such as

that already assumed, thus :

m 1x -\-njt m aa;+W2* "^ nix -\-nt

h,k.

m, x -f Hi t m2 x -\- na t I^T mx+ nt
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Determining m and n as before, (291) and (292) may be ex-

pressed

(293) , =
fc, fc.

(294)

These equations may also be verified by differentiation

and found to satisfy the differential equations (274) and (275),

and they are the complete integrals of those differential

equations. If we know how the current or the potential

varies with the time at any one point of the wire, the arbi-

trary constants h and k can be determined, and we have

the complete solution of the problem, and are enabled to

tell the potential or current at every point of the wire at

any time.

HAEMONIC E. M. F.

The general solutions, (293) and (294), hold true in case

the constants to be determined are real or imaginary ; if

they are imaginary, the equations may be transformed into

a real form consisting of some function of the sine.

Suppose the cable before described is indefinitely long,

and that at the point P (arbitrarily selected as the zero

point of the wire, the positive direction being indicated by
the arrow) the potential is caused to vary harmonicalty
with the time and is always equal to

(295) e = Esin(*)t.

Since equation (293) expresses the E. M. F. at every

point of the wire and at every moment of time, we may, by

making x = in that equation, find an expression giving
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the potential at the origin at every moment of time. This

expression is

(296)

But, since we Have supposed this potential to be harmonic,

we may equate equation (295) to (296) and determine the

constants h and Jc so as to make the expressions identical.

Equating the equations thus, we have

(297)

h,k.

In order to determine the constants, we write the sine in

its exponential form, thus :

. e e
sm co t =- -

where j stands for V 1. (See equation (109), Chapter VII.,

with footnote.) We may, therefore, substitute in (297) the

exponential value of the sine and write only two terms of the

summation, thus :

(298) e

This becomes an identity if

(299) , , ,,

JD J
(300) Also, if j <*> = *_~> and -J<*>= ckr^2'
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Solving equations (300) for &, and k.2 ,
we have

(301)

(302)

Since all the constants are found to be imaginary, this

imaginary exponential expression for the E. M. F. should be

transformed into a real expression involving some function

of the sine. This sine-function may be found by continuing

the method already indicated. The next step necessary is

to transform the complex imaginary values of k by a

rather laborious process until the imaginary j is removed

from under the radical sign.

It will be evident that the following equations are

identically true, either by squaring each member and seeing

that they are identical, or by supposing either R or L to

be zero, when they reduce to an identity.

(303)
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Substituting these expressions in (301) and (302), and writ-

ing Im for the impedance (R* -|- 1} &?)*, we have

**> *= ==

Since we know that

=, and

we may substitute these values in (305) and (306) and

write

(307) *,
=

j =,[ M'Im-E+ Vim + R\
( 2 y C GO

(308) t.= - R]

These values of ^ and &, may be simplified, for we have

the identities

(309) Vim- E+ Vlm+R = V2 Vlm+ Loo,

and

(310) Vlm-E- Vim+ R-VZVIm- L GO.
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These may be verified by squaring both members. Upon
the substitution of these values, the expressions for k, and

&, become

(311) k,
=

(312) ^=

Returning to equation (293) of E. M. F.'s and writing two

terms of the summation, we have

Rt Ck-jRx Rt _ CkyRx

(313) e = h,k t
e~
ck>'- L CV ~ L + h,k,e

cl >'-L OI"^ L
.

-p

Substituting in (313) the values of \ , k, ,
#

2 ,
k

t ,
.

, ^-j,

an(i _-^ _
given in (299) and (300), we have

(314)

Substituting in (314) the values of the constants &, and

&
2 , already given in equations (311) and (312), and factoring

~(J- )**

out the common factor e
, we have

(315) e =

( jt*j-u*+Lf* -j*>tj^(Im+L)*x }

(

~

~*J~ )
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Remembering the exponential value of the sine, equation

(109), we may express (315) as a sine-function, thus :

(316) e

sin GO t

_
[_y
~

This equation gives the value of the potential at any point

of the conductor at any time. Its interpretation and dis-

cussion will be taken up in the following chapter.

SECOND METHOD OF OBTAINING THE SOLUTION.

We might have assumed the solution to be some func-

tion of the sine, since the potential at the origin is supposed
to vary harmonically ; and it is much easier to determine

the constants if we do make such an assumption, inasmuch

as we need not deal with imaginaries. Let us assume that

the solution is of the form

e =

and determine the arbitrary constants at, 0, h, r, and p so

as to satisfy the differential equation (279). We see that

the constant r must be zero, for when x is zero the E. M. F.

is E sin GO t. Therefore h = E, and ft = GO. The constants

p and a remain to be determined, and the E. M. F. is

(317)
px

e = E e
*

sin (GO t + a x).

By differentiation we obtain (with E omitted)

px ,

e
PX
QOS (cot-{- ax)

px
CRco e co$(c*)t-\-ax).
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Equating the coefficients of the sine and cosine, sepa-

rately, to zero, we obtain the simultaneous equations

= 0,

and 2j9 CE GO = 0.

Solving these equations for p and <x, we find that

(318) p = - VR* D G -_
(319) and a = y_ tf{& +^^j + L GO.

Substituting in (317) these values of the constants p and a,

we find that the result is identical with (316) already ob-

tained by a different method.

To OBTAIN THE CURRENT.

The current may be obtained from the potential equa-

tion by means of the relation C
-j-r
= -T- [see (271)].

Differentiating (317) with respect to t and multiplying by

(7, we obtain

dt

Integrating this result with respect to x, we get

CE coe
px

( ,
)

i --
5-7 \ p cos (GO t + ot x) -f- a sin (GO t + a x)

{
.

Transforming this into an equation containing the sine

only, by means of formula (27), Chap. III., we obtain
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px (

)(320) i = E - e sin) cot -4- ax
+ Dtf (

I I
\/-V I

m L GO
tan-

1

--
,-7Im -\- LW

Here p and # represent the expressions (318) and (319).

Equation (320) may be written

sin t x tan
- '

This equation gives the value of the current at any time

at any point of a conductor containing distributed capacity

and self-induction when subjected to an harmonic source

of electromotive force. The discussion of this equation

and the potential equation will be taken up in the follow-

ing chapter.



CHAPTER XIII.

CIRCUITS CONTAINING DISTRIBUTED CAPACITY AND
SELF INDUCTION. DISCUSSION.

CONTENTS -.Circuits with no self-induction. Particular form of e and i

equations. Nature of waves. Rate of propagation. Wave-length.

Decreasing amplitude. Rate of decay with distance, with time.

Circuits with self-induction. Phase difference. Rate of propagation.

Diminishing amplitude. Rate of decay. Limitations of the tele-

phone.

Wave-propagation in Closed Circuits.

Positive and negative waves travel around the circuit until they

vanish. Resultant effect. Potential zero at middle point of the cable.

Expression for potential simplified if the length of the cable is

a multiple of a wave-length. Same results may be applied to the

current equation.

IN order to ascertain the physical effects of distributed

self-induction and capacity in a circuit, we will first discuss

the analytical results obtained in the preceding chapter, as

applied to a circuit in which the self-induction is neglected,

and then, after investigating the nature of the wave-propaga-

tion, the wave-length, rate of propagation, and rate of decay,
consider circuits containing distributed capacity and self-

induction, noting the changes caused by the introduction of

the self-induction.

193
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CIRCUITS WITH DISTRIBUTED CAPACITY BUT NO SELF INDUCTION.

When the effect of self-induction is not considered in

the cable, we may put L = in the current and potential

equations (316) and (320) and reduce them to more simple

forms, thus :

(321) e = Ee "*"*
sin

(322) i = :

These results agree with those given by Mr. T. H. Blakesley

in his book on "
Alternating Currents of Electricity," page

60, second edition. They may be directly obtained from

the differential equation (272), and upon differentiation will

be found to satisfy it.

Nature of the, Wave-propagation. Equation (321) shows

that at any point of the conductor the potential varies har-

monically with the time . At the origin where x = 0, the

potential is always equal to e = Jffsin GJ t, its maximum value

being E\ but as we proceed from the origin the potential

-JM.X

becomes less, being equal to Ee ,
an expression

which decreases as x increases. The double sign is retained

in the exponent in the equation, since it represents two

waves, one going in the positive and the other in the

negative direction from the origin, which is the source

of alternating potential. The maximum value of the po-

tential at any point of the cable may be represented

as in Fig. 44 by an ordinate to the logarithmic curve ;
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thus, OA represents the maximum value of the harmon-

ically varying potential at the origin, and.Z?6y
its maximum

value at a distance x from the origin. The distance OB is

taken as that in which the logarithmic curve has decreased

to -- of its original value, OA. The distance OD is a

quarter wave-length, and OE a half wave-length. It will

FIG. 44. CURVE I. INSTANTANEOUS WAVE IN INFINITE CABLE.

CURVE ILLoGARiTHMic DECREASE IN AMPLITUDE.

presently be shown that the amplitude decreases to almost

^-J-5-
of its original value in one complete wave-length.

One of the most striking results shown by these formulae

is .that the current always precedes the potential by one

eighth of a period, and this difference in phase is not altered

by any change in the resistance or capacity of the cable.

Rate of Propagation. Curve I. (Fig. 44) represents an

instantaneous position of the potential wave travelling along

the wire in each direction from the origin. The distance
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along the cable from one maximum potential to the next, or

in other words the length of one complete wave, may be

found by equating to 2 7t the angle containing x in the

equation. This gives

or x = A. = 2 7t A / -Y-~ = 2 A / -FT-TT ,

y CR&> V CJBn

where A denotes the length of one complete wave, and

GO
n

jr
the frequency of alternation.

JL 7t

The time of one complete period is represented by

T = , and in that time the wave advances a distance A,
n

equal to one wave-length. The rate at which the wave

advances is found by dividing the wave-length by the time

taken in advancing that distance
; thus,

2
Bate of propagation = -^-

= 2 \/ "TTB

It is seen that the rate of propagation not only depends

upon the character of the cable, but likewise varies as the

square root of the frequency of alternation. A wave with a

frequency of 400 will travel twice as fast as one with a

frequency of 100 alternations per second.

Decreasing Amplitude. The frequency affects not only
the rate of propagation, but also has a marked influence

upon the rate at which the amplitude of the waves decreases

with the distance. The distance, which we will call a?', at

which the amplitude of the wave will have - of its original
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value, is the reciprocal of the coefficient of x in the

exponent, thus :

CRv

This distance, at which the wave decays to - of its value

at the origin, varies inversely as the square root of the

frequency ;
this means that a wave with a frequency of 100

alternations per second can go twice as far as one with a

frequency of 400 and experience the same decay in ampli-

tude. Comparing this value of x' with that of a wave-length

A, we may write

The amplitude of a wave, therefore, decreases to -^ = .00187

of its value in advancing a distance equal to one wave-

length.

In order to find the time, t'
t
in which the amplitude de-

cays to - of its value, we must divide this distance, x', by

the rate of propagation, thus :

A. 2 7t GO

~T

We see that the time of decay varies inversely as the

frequency ;
thus a wave with a frequency of 400 alternations

per second will decrease a certain amount in one fourth
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the time a wave with a frequency of 100 is decreasing the

same amount.

CIRCUITS WITH DISTRIBUTED CAPACITY AND SELF INDUCTION.

It will be noticed that the introduction of self-induction

into the cable, in the manner before described, does not

materially alter the character of the wave propagation.

This is evident from the equations (316) and (320). At

every point of the conductor the potential, or current, varies

harmonically with the time, and, as before, the amplitude of

the wave decreases with a logarithmic decrement as it pro-

ceeds from the origin.

Phase Difference. One effect of the self-induction is to

change the angle of advance of the current ahead of the

potential. This angular difference is no longer a constant

angle of 45, as formerly, but is a function depending upon
J2, Z, and &?, viz.,

(323) tan 6 = + /1
Im L
m -f- L GO a

When L 0, tan = 1, and = 45. As L increases from

zero to infinity the expression changes from unity to zero,

and the angle 0, consequently, from 45 to 0. The effect

of the self-induction is, therefore, to decrease the phase
difference between the current and potential. This difference

of phase also becomes less with an increase in the frequency.
Hate of Propagation. The distance along the cable

between two maxima is found by equating the angle con-

taining x in equation (316) to 2 n and solving for a?, thus :

2 n 2 n V
x = A. = - - =

1 a
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where A
a
denotes the wave-length. Subscripts are here

used to denote circuits with self-induction. The time oc-

2 7t

cupied in travelling this distance is T -
; hence,

A GO I
Kate of propagation = -^

= = A/ ^
2ft?

C\lm+ (*>}

It is to be noticed that the wave-length and the rate of

propagation are each less than that found for circuits con-

taining no self-induction. When L = 0, these expressions

just found reduce to those previously given.

Another point to be noticed is that a change in frequency

will have a greater effect in altering the wave-length but

not so great an effect in changing the rate of propagation

as in the case of a circuit with no self-induction. Two
waves of different periods will, therefore, go more slowly

but with less difference in their rates of propagation than

with no self-induction. As before, the wave of higher fre-

quency will have the shorter wave-length and advance the

faster.

Decreasing Amplitude. As before, the amplitude of the

harmonic wave has a logarithmic decrement, decreasing

with the distance from the origin. The distance at which

the amplitude has of its original value is the reciprocal

of the coefficient of the exponent, thus :

x' = - =
/JL
V c

p V/m - L GO

This is larger on account of the self-induction. The

substitution of Z = reduces it to the value of x' found

before. An increase in frequency will cause this value to
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decrease, and the decay in a certain distance to increase
;

but the frequency has not so great an influence upon this

decay as it has in a circuit with no self-induction.

Comparing with the values found for A
:
and 6, we see

that

27r tan

In order to find the time, /, in which the amplitude

ays to of its original value, w

&/ by the rate of propagation, thus :

decays to of its original value, we divide the distance

_ 2 n tan S _ _
T

1
"~

F~
" ~~

2 TT tan
~~

GO tan~0*

The self-induction causes tan 6 to have a value less than

unity, thus increasing the time for a certain decay, that is,

decreasing the rate. An increase in the frequency causes

to become smaller. The exact effect upon the rate of

decay caused by a variation in frequency in a circuit with

self-induction depends upon the constants of the circuit.

The wave of higher frequency will always decay the more

rapidly, but with self-induction in the circuit there is less

difference in the rates of decay of waves of different periods

than there is in circuits without it.

Limitations of the Telephone. The effects of distributed

capacity in a conductor upon the wave-propagation have

been given, and the way in which these effects are altered

by the introduction of self-induction or by a change in

frequency, A consideration of the results with reference

to telephone circuits is valuable inasmuch as it is just such

effects that cause the limitations to telephony. In all cases



DISTRIBUTED CAPACITY AND SELF INDUCTION, 201

the waves of higher frequency travel the faster, and so the

several harmonic components of a complex tone are con-

stantly changing in their relative phases. The waves of

higher frequency are likewise subject to the more rapid

decay, and so when the several components are recombined

the resultant tone may be materially altered from the orig-

inal complex tone. These effects may be modified by the

presence of self-induction, but in all cases they will be

present to a certain extent, thus defining the limits of the

use of the telephone.

WAVE-PKOPAGATION IN CLOSED OIKCUITS.

Let us consider that a dynamo giving an harmonic alter-

nating E. M. F. is inserted at some point of a cable, such

as that described, which forms a continuous closed circuit.

There will be a forward wave of positive potential starting

from one pole of the machine which will travel around and

around the circuit, continually diminishing in amplitude,
until it finally vanishes. At the same time a backward

wave of negative potential will start from the other pole of

the machine and travel around in the opposite direction

until it too vanishes. The potential at any particular point

of the circuit is thus the sum of the potentials due to all

the positive and negative waves. Let I denote the length

of the cable. When the first positive wave reaches a point

at a distance x from the pole of the dynamo, the potential

due to this forward wave is

e p = Ee~ px
sin((*)t ax),

where p and a have the values given in (318) and (319).

When the wave has travelled completely around the circuit

and comes to this point a second time, its value is

-ax- al),
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which may be obtained by substituting x 4- I for x in the

above. After going n times around, it has become

eFn
= Ee~ px - pln sinM ^ ax - alri).

The resultant of all these forward waves at any one point

may be written, therefore,

(324) ef =

n

= Ee~ px
^>e~

pln
sin(G^ ax a In)

When we consider all the backward waves, they may be

represented by a similar expression in which E has the

negative sign. When the first backward wave has travelled

around the circuit so as to be a positive distance x from the

origin, it has travelled a distance I x
; this distance from

the origin in a negative direction we will call a?'. We may
therefore write for the first backward wave

eB
^

= - Ee~ px>
sin(<

- ax'\

and for the sum of all the backward waves

(325) ep = Ee~ px>
^>e~

pln
sin(c^ ax'

These expressions (324) and (325) may be simplified

since we may put

(326) sin (oot ax alri) = sin (cot ax) cos aln

- cos (G? a x) sin <* I n.
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Substituting (326) in (324), we have

(327) eF =;e- px
sm((*)t- ax) *>e~ pln cosaln

ln
sin aln.

n=co

71 =

Similarly we may reduce (325) to

W = OD

(328) eB = - Ee~ px'

sin(<* - ax') ^~ pln cos aln
n=

The resulting potential at any point due to the forward

and backward waves is the sum of EF and EB . Writing
I x for x f

in (328) and adding to (327), we obtain

nso

(329) e = jK^>e~ pln cosaln
\
e~ px sm(a>t - ax)

=

ax - al Ee~ pln sin aln

By means of the exponential values of the sine and cosine,

the values of the two summations expressed in (329) are

found * to be

*
Equations (330) and (331) may be verified thus : For brevity put

pl = h, and a I = k. Writing the exponential value of the sine [see equa-
tion (109), Chap. VII.], we have
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and
n = oo 2 p I

(331) 2 e
-*"

n

n =0 n =

Thus we have the given series equivalent to the difference of two infinite

decreasing geometrical series. The sum of such a series is known to be

equal to the first term divided by unity minus the common ratio, i.e.,

* = ; , where 8 denotes the sum, a the first term, and r the common
1 r

ratio. Applying this formula, the sum of the first series is -
.

fc _ fc
>'

and of the second --.- .
. Hence

Multiplying both numerator and denominator by e and reducing the terms

in the brackets to a common denominator after factoring out the factor e ,

we have

Replacing the exponential values of the sine and cosine, we have

e
h
sink e

pl sinal

In a similar manner we may verify equation (331), thus :

cos * =
* n =
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Let POP (Fig. 45) represent the cable which is sup-

posed to form a closed circuit, the ends at P being joined

BACKWARD

FIG. 45. FORWARD AND BACKWARD WAVES, AND RESULTANT POTEH-

TIAL, IN A CLOSED CONDUCTOR.

together. The maximum value of the potential at the posi-

tive pole of the dynamo is represented by O A. As we go
from A, this decreases along the logarithmic curve

A B CD E, until it finally vanishes altogether. Similarly, a

e~ J' k
)

l! j
36* -2 cos & )

2
J

* h -2e h
cos k + 1

\

Therefore

Zvl t>l

q.E.D.
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backward wave coming from the negative pole decreases

along the curve A' B' C' D'E '. At the point P, half-way
between the poles of the dynamo, the middle point of the

cable, it is evident that the potential remains continually

zero, for, at the point P, the distance x is ~-
, which reduces

A

equation (329) to zero.

If the length of the cable happens to be some multiple

of a r

wave-length, the expression for the potential takes a

simpler form. In this case each successive forward wave

travels around the circuit in the same phase as the first,

and all these forward waves may, therefore, be added

together algebraically. The maximum resultant potential

at any point will be the sum of the maxima of the separate

waves.

In Fig. 45, eF ,
ep represent successive forward waves,

and e and ep the corresponding backward waves. In the

case where the length of the cable is a multiple of the wave-

length, the sum of the maxima of all the forward and of all

the backward waves is represented by the dotted lines ep

and eB , respectively. The solid line e, the sum of eF and

eg, represents the resultant maximum potential along the

conductor.

27T
"We have seen that the wave-length is A = . The

length of the cable is a multiple of the wave-length
2 7t K

I = K A -
,
and a I = 2 n K, where K is a positive in-

teger. This value reduces (330) to zero, since sin 2 K n = 0,

and reduces (331) to

e*
l.-e* 1



DISTRIBUTED CAPACITY AND SELF INDUCTION. 207

These values cause the second term in (329) to vanish, and

the whole becomes

e
px __ epl-px

(332) e E ~p~i~~
sin (Got ax\

which expresses the resultant potential, represented by the

solid line e in Fig. 45, at any point of the cable, provided its

length is some multiple of a wave-length. When x = 0, this

reduces to e = E sin GO t
y the expression for the potential

at the terminals of the dynamo. When x = ^ , the ex-
a

pression vanishes, showing that the potential is constantly

zero at the middle point of the conductor.

This last simplification was made possible by consider-

ing the length of the cable to be a multiple of the wave-

length ; otherwise the algebraic addition of the maxima of

the several waves would not be possible, since they would

differ in phase. The construction of the resultant curves

would not be so simple, but the nature of the results would

not be materially modified.

The phenomena in connection with the flow of current

are similar to those just discussed relating to the propaga-
tion of potential, and are obtained in the same manner from

the current equation.
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CHAPTER XIV.

INTRODUCTORY TO PART II. AND TO CIRCUITS CON-
TAINING RESISTANCE AND SELF INDUCTION.

CONTENTS: Introductory. Analytical solutions of Part I. for simple

circuits extended to compound circuits by graphical method. Arrange-

ment of Part II. Graphical representation of simple harmonic

E. M. F.'s. Graphical representation of the sum of simple harmonic

E. M. F.'s of same period. Triangle of E. M. F.'s for a single circuit

containing resistance and self-induction. Impressed E. M. F. Ef-

fectiveE. M. F. Counter E. M. F. of self-induction. Direction shown

from differential equation. Graphical representation. Methods to be

used M.nd symbols adopted in the graphical treatment of problems.

First method (the one used throughout this book), employing E. M. F.

necessary to overcome self-induction. Second method, employing
E. M. F. of self-induction. System of lettering and conventions

adopted in graphical construction.

THE analytical solutions derived in Part I. apply merely
to a single circuit having resistance, self-induction, and ca-

pacity in series. The problems which arise in case there

is not simply a single circuit but a complicated network of

conductors might be treated analytically, though the pro-

cess would be exceedingly laborious and the results too

cumbersome to handle. Fortunately, however, by making
use of the analytical solutions already given in Part I., and

extending them by graphical methods, we are enabled to

solve problems with compound circuits which offer con-

211
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I

siderable difficulty to analytical investigation. These

graphical methods are most easily and advantageously

adapted to problems in which we deal with an harmonic

impressed E. M. F.

The object of this Part is to show how to solve by

graphical methods any problems arising with any combina-

tion of series and parallel circuits, in any branch of which

there may be an harmonic impressed E. M. F.

The plan to be followed is similar to that adopted in

the first Part. First are considered various compound cir-

cuits which contain resistance and self-induction only, and

then circuits containing resistance and capacity only, and

finally circuits containing all three, resistance, self-induc-

tion, and capacity. The problems to be considered in each

case are similar, first a series circuit, then a divided circuit

with two branches and with any number of branches, then

any combination of series and parallel circuits.

Before giving the solutions of these problems, the way
in which this graphical method corresponds to and is a

substitute for the analytical method, and the manner in

which it is to be used, will be explained.

GRAPHICAL EEPBESENTATION OF A SIMPLE HARMONIC
ELECTROMOTIVE FORCE.

An harmonic impressed electromotive force is repre-

sented by the equation

e = E sin GO t,

as was explained in Chap. II. on harmonic functions. The

plot of this equation, in which t is the independent and e

the dependent variable, gives the sine-curve represented in

Fig. 46. A diagrammatic method of representing this har-

monic E. M. F. is seen in the same figure. The line OA
is supposed to revolve in the counter-clockwise direction
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about the point with uniform angular velocity. Its pro-

jection OP at any moment corresponds to the ordinate

O'P' of the sine-curve. If the circle be moved horizontally

with a constant velocity, the projection P would trace a

sine-curve the ordinates of which represent the value of the

impressed E. M. F. at any instant. Diagrarnmatically we

mav represent the impressed E. M. F. by the line A

FIG. 46. GRAPHICAL REPRESENTATION OF A SIMPLE HARMONIC
ELECTROMOTIVE FORCE.

alone, which is equal in length to its maximum value, E.

In this sense, then, we may represent harmonic E. M. F.'s

by lines in the graphical constructions which follow.

GRAPHICAL EEPKESENTATION OF THE SUM OF SIMPLE HAR-
MONIC ELECTROMOTIVE FORCES HAVING THE SAME PERIOD.

If an E. M. F. is the sum of two simple harmonic E. M. F.'s

of the same period, it may be represented by the equation

(333) e = E^ sin GJ t -\- E^ sin (GO t -f- 6).

It can easily be shown analytically that this sum is a

simple harmonic E. M.F., differing in phase and amplitude
from each of the two components, and having the same
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period ; for, upon expanding sin (a? t -f- #), the equation
becomes

e = (E, + E^ cos #) sin G? t -f- 7, sin cos GO t.

This may be transformed by means of the trigonometric for-

mula (27), Part I., to

(334) e = VE? + E?+ cos

sm - -- v .

--
-r. > .

( EI -\-E^ cos6/ f

This equation represents a simple harmonic E. M. F., since

it is of the form

e = E sin (GO t -f- 0),

in which E and are constant quantities. Moreover, this

equation shows that the diagonal of the parallelogram

formed by the two component lines which represent the

two component terms of equation (333) is the line which

graphically represents equation (334), and is therefore the

sum of the two components.

FIG. 47. RESULTANT OF Two HARMONIC ELECTROMOTIVE FORCES.

In Fig. 47, curve I., generated by the line A, represents

the first term of equation (333). Curve II., generated by

OB, represents the second term. Curve III. is the sum of
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curves I. and II., and is generated by the diagonal of the

parallelogram formed upon the two components A and

OB. That curve III., the geometrical sum, represents

equation (334), the analytical sum, is seen by the fact that

the analytical relations, as shown by the equation, agree

with those readily obtained from the geometry of the

figure. Thus, from the equation, the amplitude of the

resultant harmonic function must be

E = &* + E? + 2 #, #. cos ft

But from the geometry of the figure this same relation is

evident, for ~0~A = E, , 0B = E,,tm&AOB = 6.

Again, from the equation the resultant E. M. F. differs

in phase from E^ by an angle

From the figure we see

This agreement of the analytical and graphical relations

establishes the correctness of the construction, and we can,

therefore, conclude that the sum of any two sine-curves of

the same period represented by two lines revolving about

a common centre is also a sine-curve of the same period

represented by the diagonal of the parallelogram formed

on the two component lines.

When the component E. M. F.'s are more than two in

number the sum is represented by the vector, which Is the

geometrical resultant of all the component rectors. This

evidently follows from the preceding, since anj two compa
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iients are equivalent to a single E. M. F., and this combined

with a third and fourth component gives the geometrical
resultant as the sum of all the components. Thus, in Fig.

FIGS. 48 AND 49. ADDITION OP HARMONIC ELECTROMOTIVE FORCES.

48, we have a number of vectors A, B, C, D, each repre-

senting one component E. M. F. and drawn from the same

origin 0. The sum is found in the usual manner by con-

structing a parallelogram on any two and then combining
the resultant with a third, and so on until all the compo-
nents are reduced to a single resultant vector E. This

process is equivalent to that indicated in Fig. 49, where the

vector A is first drawn from the origin 0, then B from the

extremity of A, C from the extremity of B, and so on until

all the lines are drawn. The resultant or geometrical sum
is then the vector, R, drawn from the origin to the last

point found, thus completing a closed polygon.
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TRIANGLE OF ELECTROMOTIVE FORCES FOR A SINGLE CIRCUIT
CONTAINING RESISTANCE AND SELF-INDUCTION.

In Chapter III., in which circuits containing resistance

and self-induction were analytically treated, it was shown

that if a circuit contains an harmonic impressed E. M. F.,

e = ^sin GJ t,

the value of the current is also harmonic and is

(335) i = _ sin [cot tan~' ^-1.
' \ I

This current equation was derived from the differential

equation of electromotive forces

in which e is the instantaneous value of the impressed
E. M. F. of the source, and R i that part, usually called the

effective E. M. F., necessary to overcome the ohmic resist-

ance, and Lj-
that part necessary to overcome the counter

E. M. F. of self-induction.

In Fig. 50 let tlie vector A represent the harmonic

impressed E. M. F. Then, by equation (335), we know that

the current is represented by a vector O B lagging behind

A by an angle 9 whose tangent is
-^-.

The effective E. M. F. must be represented by a vector

G, equal to HI, in the same direction as the current, and

equal to the current vector, OB, multiplied by R. The

di
counter E. M. F. of self-induction, L, is at right angles
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to the current and must therefore be represented by the

vector C A perpendicular to B. It can be shown to be

FIG. 50. TRIANGLE OP ELECTROMOTIVE FORCES. FIRST METHOD THE

ONE USED THROUGHOUT THIS BOOK EMPLOYING E. M. F. TO OVER-

COME SELF-INDUCTION.

at right angles to the current, as follows. Equation (335)

may be written thus :

i = 1 sin (GO t 6).

By differentiation,

(336)

di
-= = GOI cos (GO t 6).

Multiplying this equation by L and writing in terms of the

sine, we have

(337) L t/sin (GO t 6+ 90).

di
By this equation it is seen that the E. M. F., L -?--, necessary

to overcome that of self-induction is represented by a vector

C A, whose length is L GO /, ninety degrees in advance of the
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current. The E. M. F. of self-induction is equal and oppo-

site to that which is necessary to overcome it, and is conse-

quently ninety degrees behind the current, represented by

the vector A C.

That the foregoing construction represents the case and

fulfils the analytical conditions expressed by the current

equation (335) may be shown again by a further comparison

of the geometrical with the analytical relations. Thus in

Fig. 50 or 51,

This is seen to correspond to the angle of lag in equation

(335). Also the impressed E. M. F. A, being the hypote-

nuse of the triangle A C, is equal to the square root of

the sum of the squares of the two sides, and therefore

that is. E= V

E
and

VR* + L*

This is seen to correspond to the maximum value of the

current given in equation (335).

METHOD TO BE USED AND SYMBOLS ADOPTED IN THE

GRAPHICAL TREATMENT OF PROBLEMS.

In the graphical treatment of circuits with resistance

and self-induction there are two methods, each equally

correct, for obtaining the same results depending upon
whether we consider the E. M. F. of self-induction or the

equal and opposite E. M. F. necessary to overcome it.
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The method in which the E. M. F. necessary to over-

come the self-induction is used is shown in Fig. 50 and has

been fully discussed. In this method of construction, the

impressed E. M. F. is regarded as made up of the sum of

two components, one the effective E. M. F. in the direction

of the current, and the other that necessary to overcome self-

induction ninety degrees ahead of the current.

FIG. 51. TRIANGLE OP ELECTROMOTIVE FORCES. SECOND METHOD,
EMPLOYING E. M. F. OP SELF-INDUCTION .

The method in which the E. M. F. of self-induction is

used is shown in Fig. 51. The point of difference is that

the line A C represents the E. M. F. of self-induction in-

stead of the E. M. F. necessary to overcome it, and is ninety

degrees behind the current instead of ahead of it.

In this method of drawing, the effective E. M. F. which

drives the current is regarded as the resultant of the two

other E. M. F.'s in the circuit, viz., the impressed E. M. F.

and that of self-induction.

Either of these methods, if carried throughout the whole

drawing, is correct and finally brings the same results
;
but

unless one method is adopted and carried throughout, there

is apt to be confusion. In all cases the method used in

this book is the first one, namely, that Avhich considers
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the E. M. F. as that necessary to overcome self-induction, as

illustrated in Fig. 50.

In order that the diagrams may be readily understood,

the arrangement and system of lettering adopted will be

explained. In all cases the positive direction is counter-

clockwise, and the diagram is supposed to revolve counter-

clockwise around the centre 0. Lines will be designated

by letters in small capitals placed at their extremities.

The letters therefore designate points and will be used

alphabetically, beginning with A, in the order in which the

points are determined. Thus in Fig. 54 the line A is

first drawn, then the points B, (7, 1), etc., are determined,

and the lines B, (7, B C\ 1TI>, etc., drawn in order.

All revolve counter-clockwise about 0.

The direction of lines representing E. M. F. or current

will be indicated by arrows, and, where possible, these

arrows will be placed so as to show where the lines ter-

minate. In order that lines representing current and

E. M. F. may be distinguished, the arrows for current will

have a closed head, as in the case of the line A, Fig. 54,

and the arrows for E. M. F. will have an open head, as on

the line B C. Dotted lines are needed only for the con-

struction of the figure or to make clear some point that

would otherwise be ambiguous or doubtful. When a

number of lines terminate at one point and are each di-

rected toward the point, it has been found convenient to

avoid the confusion of the many arrows coming thus to-

gether by omitting the arrows and drawing a small circle

at the point, as at G, Fig. 54.



CHAPTER XV.

PROBLEMS WITH CIRCUITS CONTAINING RESISTANCE AND
SELF INDUCTION. SERIES CIRCUITS AND DIVIDED

CIRCUITS.

Prob. I. Effects of the Variation of the Constants R and L in a Series

Circuit. R varied. L varied.

Prob. II. Series Circuit. Current given.

Prob. III. Series Circuit. Impressed E. M. P. given.

Prob. Ilia. Measurements on a Series Circuit.

Prob. IV. Divided Circuit. Two Branches. Impressed E. M. F. given.

Equivalent Resistance and Self-induction defined.

Prob. V. Divided Circuit. Any Number of Branches. Impressed

E. M. F. given. Equivalent Resistance and Self-induction

obtained for Parallel Circuits.

Prob. VI. Divided Circuit. Current given. First Method: Entirely

Graphical. Second Method: Solution by Equivalent R
and L.

Prob. VII. Effects of the Variation of the Constants R and L in a Divided

Circuit of Two Branches. R varied. L varied. Limiting

Cases. Constant Potential Example. Constant Current

Example.

Problem I. Effects of the Variation of the Constants
R and L in a Series Circuit.

BEFORE taking up the problems proper which arise in

connection with the investigation of circuits containing

resistance and self-induction, it will be well to first con-

sider the changes which occur when the resistance is varied

and the coefficient of self-induction kept constant, and those

222
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which occur when the self-induction is varied and the

resistance kept constant. The limiting cases, when the

resistance or the self-induction approaches zero or infinity,

will be shown, so that the following problems may be

applied to such limiting cases without the confusion which

might otherwise arise.

EESISTANCE VARIED.

Let us suppose that the ohmic resistance is varied in a

circuit in which the self-induction is kept constant.

Let OA C, Fig. 52, represent the triangle of E. M. F.'s

FIG. 52. VARIATION OF RESISTANCE AND SELF-INDUCTION IN A SERIES

CIRCUIT. PROBLEM I.

for the circuit when the resistance is R. Divide by
to obtain the current / equal to B. Draw the line O D
of indefinite length perpendicular to the E. M. F. A in

the direction of lag. The angle D C, being the comple-
p

ment of A C, is therefore tan
' 1

. Draw BE perpendicu-

lar to OB and let it meet the line OD in E. Then in the

right triangle O B E the side S~E equals ~; for B ,

-L GO

equals 7, and tan EG B equals T .

jL/ QO

1!

oo
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It follows that the hypotenuse, E, of this triangle is

W
equal to

-j
,
and is, therefore, a constant entirely inde-

pendent of any variation in the current /, or resistance R.

sides OB and B E, we obtain

Taking the square root of the sum of the squares of the

f = I./l+-7^.V L

From equation (29) we have

E
^R

Therefore

E
L Gd

Now, since the side OB of the right triangle

always represents the current /, and the hypotenuse OE is

independent of the current or the resistance, it follows that

the current is always represented by a vector OB inscribed

in the semi-circle B E, for any possible variation in the

resistance. The arrow shows the direction of change as P
increases.

In the particular cases when R is infinite or zero we

see clearly by this figure the limiting values of the current.

When R is infinite the current is evidently zero. When
R approaches zero (or, what is approximately the same

thing, becomes very small compared with the self-induc-

tion) O B approaches E, and in the limit the current

becomes

/= .

L GO
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When the circuit contains no olimic resistance we see,

first, that C~A = O A, that is, the impressed E. M. F. is

equal to L GO 7, the E. M. F. of self-induction
; and, second,

that the current lags 90 behind the impressed E. M. F.

These relations, here geometrically shown, are analytically

expressed in equation (337).

SELF INDUCTION VARIED.

Suppose the coefficient of self-induction is varied in a

circuit in which the resistance is constant
; we wish to find

how the current changes.

In the same figure, 52, prolong the line EB to F until

it meets the impressed E. M. F. A prolonged. Then

the line B JF'must equal ^ , since tan EOF equals -~~.

The hypotenuse 6^
T

is, therefore,

But from (29) we find

V]

US

Therefore, ~UT? = -

Since the hypotenuse F is independent of the current

7 or the self-induction Z, and is a constant for any variation

in Z, it follows that the current is always represented by a

vector, B, inscribed in the semi-circle OB F, for any

possible variation in the self-induction L. In the figure

the arrow shows the direction of change as L increases.

We easily see what the value of the current is in the
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limiting cases where L is infinite and zero. When L ap-

proaches infinity, the current approaches zero. When Z

approaches zero, the vector B approaches O F, the

E. M. F. necessary to overcome self-induction is zero,

Tf>

and the current follows Ohm's law, being equal to
-g.

That the construction of Fig. 52 is consistent with the

equations is further shown by the following relations.

(338)

(339)

Equating (338) and (339), we find

E
or /=

a result which is identical with that analytically expressed

in equation (335).

It is seen that in the limiting cases, where the resist-

ance or the self-induction approaches zero or infinity, the

triangle of electromotive forces becomes two superimposed

straight lines, that is, one side becomes zero. In most of

the following problems only the general cases are discussed

in which the circuit contains a finite resistance and self-

induction. The constructions may be modified, however,

according to the principles just set forth, so that the solu-

tions given may be applied to the limiting cases referred

to. Although in some cases it may require a little thought
and care to make this modification, it has been deemed

unnecessary to show its application to each particular

problem.
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Problem II. Series Circuit. Current Given.

Let there be a circuit, Fig. 53, having n different coils

Ri,L,

I ^Ra.L.
,5 ?!

FIG. 53. PROBLEM II. PROBLEM III.

in series, with resistances B
l , #, , etc., and self-inductions

Zj ,
Z

2 ,
etc. It is required to find the impressed E. M. F.

necessary to cause a current / to flow through the coils.

In Fig. 54 make OA equal to the current flowing.

FIG. 54. PROBLEM II. AND PROBLEM III.

Multiply this by R l
and lay off 1> equal 7?

t/, which is then

the effective E. M. F. in the first coil. Draw B C perpen-

dicular to A in the positive direction, or direction of ad-

vance, and make the angle B C equal to O
l
= tan' 1 *

.

**1

Then B C is the triangle of E. M. F.'s for coil one, and

En is its impressed E. M. F. Similarly lay off CD parallel

to O A and equal to R^ 7, and then make the angle D CE
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-r

equal to ft,
= tan"

1

-^
. This triangle CDE then repre

*">

sents the triangle of E. M. F.'s for the second coil, and Eh

its impressed E. M. F. In a similar way we may go on

constructing triangles of E. M. F.'s for each of the n coils

until we finally reach a point G, which is the end of the line

representing the impressed E. M. F. in the last coil. If we

draw the line G, it must be the impressed E. M. F. of

the source, which we wished to find, as it is the sum of all

the n different falls in potential for each coil. Indeed, this

will be evident from the following. If we lay off B H
= CT), and HlT=KF, we find that 0~K = EJ"+ EJ
+ etc. = 12 R. And, similarly, KG = L, at 7-f Za & /

-|- etc. = GO12 L. If we replace all the n different coils by
a single coil whose resistance is the sum of all the n resist-

ances, viz., 2 R, and whose coefficient of self-induction is

the sum of all the n coefficients, viz., 2 Z, we find that G
is the impressed E. M. F. necessary to cause the given

current 7 to flow, and K G is the triangle of E. M. F.'s

for the equivalent coil.

Problem III. Series Circuit. Impressed E. M. F. Given.

First Method. The circuit being the same as in PROB-

LEM II., Fig. 53, it is required to find the current, I, which

a given impressed E. M. F. will cause to flow.

We may solve this problem by constructing upon the

given E. M. F. (TG, Fig. 54, the triangle OK G so that the

angle at O is tan"
1

-"IT' ^ie s^e ^^^ tnen equal to

R. The current T, = OA, is then found by dividing

tflTby 2R.
The impressed E. M. F.'s, Eat Eb , etc., of the several

parts of the circuit are found as in the previous problem.
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The total effective E. M. F. represented by K is divided

in proportion to the resistances B
l , JR., , etc., into the parts

OB, BHy etc., representing the effective E. M. F. in the

several parts of the circuit. The impressed E. M. F.'s are

obtained by erecting upon OB, B H, etc., the E. M. F.

triangles B C, CD E, etc.

Second Method. It is sometimes more convenient to

solve this problem in the following way. Assume that a

certain current is .Howing in the circuit
;
then find the

E. M. F. required, by the method of Problem II. Now if

the whole figure be magnified or diminished in proportion

until the E. M. F. thus found is made equal to the given

E. M. F., then the current will be that due to this given

E. M. F., which is the required current
; for, it is evident

that if we change either the E. M. F. or the current, the

other is changed in proportion, and indeed the whole dia-

gram is changed in proportion.

Problem Ilia. Measurements on a Series Circuit.

One of the simplest and also one of the most important
cases of series circuits which is met with is that of a non-

inductive resistance in series with an inductive resistance

as illustrated in Fig. 54a. The corresponding diagram of

E. M. F.'s is given in Fig. 545, in which OB and B A rep-

resent E
t
and E^ the E. M. F.'s impressed upon the non-

inductive and inductive resistances, respectively, and O A
represents E, the total impressed E. M. F. The inductive

circuit R^ Za may be the primary of a transformer or any
inductive circuit whatsoever. From the values of E, El ,

and En ,
which are readily obtained from three voltmeter

readings, and the value of the non-inductive resistance 72, ,

we can ascertain the following quantities : the angle 6 by
which the current lags behind the impressed E. M. F., E\
the angle #

2 by which the current in the inductive part of
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the circuit lags behind the E. M. F., /, , impressed upon thai

part ;
the impedance, resistance, and self-induction of the

inductive circuit (in the case of a transformer it is the

apparent resistance and self-induction which is found) ;
and

Ffci RS

R 2 l C

FIGS. 54, 54&.

the power expended in each part of the circuit and in the

whole circuit.

From the values E, E, ,
and j^, the triangle A E is

drawn, and upon OA the right triangle CA is erected by

producing B to C.

The resistance J?
a

is obtained thus. B = R
l I, B C

= fi, I. Therefore, R, : E, : : O~B : B~C. For R, we may
Tji

write -r. The resistance Z2
3
is then

BG EC
M, =

OB OB I '

The angle 6 by which the current lags behind the

E. M. F. impressed upon the whole circuit is found from

the geometry of the figure. By trigonometry,

;

_ 2 EE, cos B.
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RESISTANCE AND SELF INDUCTION. 231

E: - E;
ZEE,

The angle a , by which the current lags behind the

E. M. F. impressed upon the inductive part of the circuit is

similarly found from the trigonometrical expression

E* = E? + E^ - 2 E, E, cos B A.

From this it follows that

Tji't _ zpa _ ij^a

cos = -- cos B A =

In the non-inductive portion of the circuit, the current

is in phase with the E. M. F. and 0,
= 0.

The value of the self-induction of the inductive circuit

is obtained from the values for R^ and
3 given above,

and from the relation tan a
= p . The value of the

**i

expression L^ c0, called the inductive resistance in contra-

distinction to ohmic resistance, may be given in ohms.

To find Z
2 , 3

is first found from the expression given

above for cos a by means of trigonometry tables, and

the tangent of the angle is then found, also from the tables,

and equated to ^ ,
from which Z

2 may be readily cal-
MV

culated.

An explicit expression for Z2
in terms of E

l , E^ , and E
may be found as follows. From the figure it is seen that

When the expression given above for 0, is substituted in

this expression, it becomes

Ln =
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Inasmuch as the expression involves the differences

of the fourth powers, it does not afford as accurate a

method for determining self-induction as that given in the

preceding paragraph,

In these expressions, E, E1 , E^ ,
and I represent maxi-

mum values, but in the above cases the expressions would

be the same if the virtual values were used, that is, the

square root of the mean square of the instantaneous values

[see page 38], which are represented by /, E, etc. This is

because the values of the above expressions all depend

upon the ratio of the quantities in such a way that if each

quantity were multiplied by the same constant, the values

of the expressions themselves would remain unchanged.
It is therefore immaterial whether maximum or virtual

values are used.

In obtaining the expressions for the power expended in

each portion of the circuit the virtual values will be used,

inasmuch as these are the values usually obtained from

alternating-current measuring instruments. The general

expression for the power imparted to a circuit is [see (195)

and (196)]

W= %E IcosO = EIcos 6,

where 6 is the angle of lag between the E. M. F. and the

current.

In the non-inductive resistance the angle of lag is zero

and the power is, therefore,

The power expended in the inductive part of the circuit is

w, = EJ cos *.
=
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The power expended in the whole circuit is

W= E /cos = ~= (E + E: - E?)

=

It is evident that the power expended in the whole circuit

is the sum of the power in each part, or

This method of measuring power is known as the three-

voltmeter method and was apparently suggested by Mr.

Swinburne and by Prof. Ayrton and Dr. Suinpner at about

the same time. The method is applicable to any circuit

whether the E. M. F. is harmonic or not.* For maximum

accuracy E, = E^ .

Problem IV. Divided Circuit. Two Branches.

Impressed E. M. F. Given.

Let us consider the problem of a divided circuit having

two branches in parallel as indicated in Fig. 55. Each

R, L,

/~wvjTnr& v

FIG. 55. PROBLEM IV.

branch contains self-induction and resistance, and there is

an impressed E. M. F., E> between the terminals J/and N;

* See " The Measurement of the Power given by any Electric Current

to any Circuit:" Prof. Ayrton and Dr. Surapner ;
Proc. Roy. Soc., Vol.

XLIX., 1891, p. 424.
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it is required to find the main current, It and the currents

/! and /
2
in the branches.

Fig. 56 shows how to find graphically the main and

branch currents when the impressed E. M. F. and the resis-

tance and self-induction of each branch are given.

FIG. 56. PROBLEM IV.

Since the impressed E. M. F. at the terminals of each

branch is known, each may be separately treated as a

simple circuit containing resistance and self-induction by
the method previously given in Fig. 50.

Draw A equal to the impressed E. M. F., E. Make the

L GO

angle A B =6
t
= tan'

1

-4j- in the negative direction such
**i

that it is an angle of lag. Then the right triangle E A
is the triangle of E. M. F.'s for the first branch, OB is the

E. M. F. necessary to overcome resistance, and B A that

necessary to overcome the self-induction. In a similar way

we may lay off the angle A C 0, = tan~
l -~ to repre-

- a

sent the angle of lag in the second branch, and then

construct the triangle OCA, which will represent the

E. M. F.'s in the second branch. Since these are right



RESISTANCE AND SELF INDUCTION. 235

triangles, the points B and C lie on the circumference of a

circle whose diameter is A. Since the effective E. M. F.,

H
l /, ,

in the first branch is B, the current is D, equal
to B divided by B^ Similarly the current 7

a is E
y

equal to C divided by 7?
a . Now the current in the main

circuit at any instant is equal to the sum of the currents in

the branch circuits at that instant. Construct, therefore,

the parallelogram upon the sides D and O E. The diag-

onal F represents the main current, /, for its projection

at any moment equals the sum of the projections of the

two sides D and E, which projections represent the

instantaneous values of the current in the two branches.

From the geometry of the figure it follows that

E= 7, VR* + Lftf = 7
2

It is seen that the current in each branch is inversely pro-

portional to the impedance.

This diagram gives the complete solution of the problem
of the divided circuit. The currents 7

t
and 7

3 in the

branches lag behind the impressed E. M. F., E, by angles

0, and a
. The main current, /, lies between these, making

an angle ft with E. It is evident that the maximum value

of the main current, /, being the longest diagonal of the

parallelogram whose sides represent the currents in the

branches, is greater than the current in either branch.

Since the currents differ in phase, at certain parts of a

period it happens that the current in a branch is greater

than the main current, for when the main current is zero

the branch current may have a considerable value.

EQUIVALENT EESISTANCE AND SELF INDUCTION.

Suppose that instead of the two parallel branches which

have been considered, a single circuit be substituted for them

whose resistance, R r

,
and self-induction, L',

are such that



236 CIRCUITS CONTAINING

the same current as before will flow in the main line. Then

G A must represent the triangle of E. M. F.'s for this cir-

cuit, since the impressed E. M. F. is 6M, and the effective

E. M. F. is 6r, in the direction of the current, and the E. M. F.

G A to overcome self-induction is at right angles to the

current. The resistance, It', and self-induction, Z', of the

equivalent simple circuit that is, a circuit which allows the

same current to flow in the main line are called the

equivalent resistance and equivalent self-induction of the

divided circuit.

The values of this equivalent resistance, R ',
and self-

induction, Z', may easily be found in terms of the resist-

ances and self-inductions of the branches. This will be

deferred until after the discussion of the following problem,

in which the solution is given for any number of circuits

connected in parallel.

Problem V. Divided Circuit. Any Number of Branches.

Impressed E. M. F. Given.

Let the divided circuit MN, Fig. 57, have n branches

FIG. 57. PROBLEM V. AND PROBLEM VI.
.

in parallel, each containing resistance and self-induction,

with an impressed E. M. F., Et
between the terminals M

and N. The currents /, , Z, ,
. . . / in each branch may be

constructed as in Problem IV., where there were only two
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branches, and the resultant current, 7, in the main line

found, since it is the geometrical resultant of the n branch

currents. Fig. 58 is constructed as follows. Draw a semi-

FIG. 58. PROBLEM V. AND PROBLEM VI.

circle upon the impressed E. M. R, OA, and lay off the n

different angles ff
t ,

#
2 , . . . 6n in the negative or lag direc-

tion, which represent the lag of the current in each branch

behind the impressed E. M. F., E. This will give n differ-

ent right triangles OB A, OCA, D A, etc., which repre-

sent the E. M. F.'s in each branch, the sides of which

represent the effective E. M. F., the E. M. F. to overcome

self-induction, and the impressed E. M. F. Now the cur-

rents 7, ,
7
a ,
7

3 , etc., or F, O G, OH, etc., are found by

dividing the effective E. M. F.'s R, 1, , R, 7, , R, 73 , etc., or

OB, C, O D, etc., by the resistances R, , R^, Rz , etc.

The resultant current, /, or O L, is found by taking the

geometrical resultant of all the branch currents, F, G,

U, etc. This construction is shown by the closed poly-

gon O FJK L, each side of which is equal to a branch

current. By this construction it is evident that, since the

angles F J, FJK, etc., must be each greater than a right

angle, the maximum resultant current, /, or O L, is greater

than any of the branch currents. During a certain portion

of each period, as before explained, the instantaneous value
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of the resultant current is less than the instantaneous value

of the current in any one branch.

EQUIVALENT EESISTANCE AND SELF-INDUCTION OF PARALLEL

CIRCUITS.

In this case, as in the previous one, suppose that a

single equivalent circuit is substituted for the n parallel

branches having such a resistance, 7?', and self-induction,

Z', that the current in the main line is not changed either

in magnitude or phase. The values of this equivalent

resistance, 7?', and equivalent self-induction, Z', may
easily be found in terms of the resistances and self-induc-

tions of each branch. In Fig. 58 the triangle MA must

represent the triangle of E. M. F.'s for the single equivalent

circuit substituted for the system of parallel branches, if

the resultant current L is to be the same
; for, the effect-

ive E. M. F., R'I, is in the direction of the current O Z, and

is therefore equal to M, since the E. M. F. to overcome

the self-induction, L'ool or MA, is perpendicular to the

current.

To find R' and L', as well as the tangent of the angle 6

which the main current makes with the impressed E. M. F.,

we may proceed as follows.

If we take the projections of the currents /, 7, , Z, , etc.,

upon the line O A, we obtain the equation

(340) 1 cos = 7, cos 0, + 7, cos 0, + . . . = 2 /cos 6.

If we consider the projections of the currents upon a

line perpendicular to A, we obtain

(341) 7 sin 6 = I, sin
t + /, sin

f + . . . = 2E /sin e-

Since all the triangles B A, OCA, etc., are right



RESISTANCE AND 8ELF INDUCTION. 239

triangles, the following values for 7, II ,
7

2 , etc., and for

cos 0, cos 0j , etc., sin 0, sin B
l , etc., will be evident.

(342) /=

Z=
/ + Z,' GO*

V
**= .,*. r^F==T etc.

(343) oos = ^

(344) sin 6 =

sin 0, =

cos 0,
=

COS #
2
= ~7^"~y= e*C-

L'GO

.

= Z^
\TR: + z

a

a
a,

2 '

Substituting these values in (340), we have

(345) ^ = *L_

^ ,
A>, ^ J? .

f- z,
a

"h #; +7;,' to

- - ^^ -f-TZw
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Making a similar substitution in (341), we have

7 sin V L GO

(346)

Z GO L* GO ^T" L GO

^a + /? I 7 a ' -{-..._

For brevity, let

(348) and

Dividing (346) by (345), we have

(349) tan ^ =
p,

From equations (345) and (346), we have

,
and

Comparing these with the values of cos and sin 6 in (343)

and (344), we obtain

(350) A=-.-^-,
or Rf

--

(851) and B GO = -jr$-<
or L' GO =
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For cos
2 6 and sin

2 9 we may substitute the values

1 1 A*
cos2

tan
2

_L Cot
2

(9

~"

_,
A ~

A9+ J5
2

Making these substitutions, equations (350) and (351) be-

come

(352)

B
(353) L' 00 = A1 +
These expressions, (352) and (353), enable us to calculate

the equivalent resistance and self-induction of any number

of parallel circuits when we know the resistance and self-

induction of each. The angle of lag of the main current is

found from (349). These same analytical results were

otherwise obtained by Lord Kayleigh, and given by him in

a paper on " Forced Harmonic Oscillations of Various

Periods
"

in the Philosophical Magazine, May 1886. The

present demonstration was first given by the authors in the

Philosophical Magazine for September 1892.

Problem VI. Divided Circuit. Current Given.

Suppose we have a number of circuits, each containing
resistance and self-induction, connected in parallel as in

Fig. 57, and we know the value of the current, 7, in the

main line. It is required to find the current in each of the

several branches. The value of the impressed E. M. F. is

not known, and so the construction cannot be made in the

same manner as in the problem just discussed.
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FIRST METHOD. ENTIRELY GRAPHICAL.

We can, however, assume any value for the impressed
E. M. F., E, and make the construction accordingly, as in

the previous problem. We would thus obtain a value for

the main current, /, different from the one given. The

diagram will be correct in all respects except the scale, and

this must be changed in the ratio of the given value of /
to the value of I obtained from the assumed impressed
E. M. F. The true value of the impressed E. M. F. and

the current in each branch may thus be obtained and the

solution is complete.

SECOND METHOD. SOLUTION BY USE or EQUIVALENT
RESISTANCE AND SELF INDUCTION.

Another solution for this same problem is obtained by
the use of equivalent resistance and equivalent self-induc-

tion of parallel circuits. These values for R' and L' are

calculated according to the expressions (352) and (353).

Draw Mt Fig. 58, equal to R'l, and draw MA perpen-

dicular to M and equal to L'ool. The hypotenuse OA
of the right triangle O MA gives us the value of the im-

pressed E. M. F., E. The further construction is the same

as before. The angles of lag lt 9 ,
#

3 ,etc., are laid off,

and the E. M. F. triangle for each branch circuit is drawn.

The effective E. M. F. and the current in each branch are

thus readily found.

Problem VII. Effects of the Variation of the Constants
R and L in a Divided Circuit of Two Branches.

EESISTANCE ALONE VARIED IN EITHER BRANCH.

Suppose the resistance of one branch of a divided cir-

cuit to be varied and the other constants to remain un-

changed ; it is required to find the changes in the currents

due to this variation in resistance when there is a constant
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impressed E. M. F. Let the diagram for the divided circuit

shown iu Fig. 55 be represented in Fig. 59, where the same

letters represent the same points as in the diagram, Fig. 56,

already given for the divided circuit.

If the resistance 7?! is varied, it is evident that the effec-

tive E. M.F. B always lies on the semi-circle B A, and,

as this branch may be regarded as a single circuit having a

constant E. M. F. and a resistance which is varied, the cur-

FIG. 59. VARIATION OP EESISTANCE AND SELF-INDUCTION IN A

DIVIDED CIRCUIT. PROBLEM VII.

rent /, always lies on the semi-circle D H, whose diameter

Tji

is OH or -j (see PROBLEM I.). If R^ is the only quantity
-Lt

v
GO

varied, it is evident that the resultant main current must

lie on the semi-circle EF J, whose diameter EJ is equal

to 0~H.

Similarly, if R
t
is varied alone, the current 7, must lie
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g
on the semi-circle E K, whose diameter is OK or -^ .

L^oo
The resultant main current will then lie on the semi-circle

D F L. When both resistances are varied at the same

time the currents J
l
and 7

2
lie on their semi-circles D H

and EK ;
but the resultant or main current has no par-

ticular locus.

The arrows on the curves, showing the effects of a varia-

tion of the resistance, indicate the direction of the change
as the resistance increases.

SELF INDUCTION ALONE VAEIED IN EITHER BRANCH.

Regarding each branch of the divided circuit, having a

constant difference of potential at its terminals, as a single

circuit, it is evident that any variation of L
l
alone will cause

the current vector 7, to lie upon the semi-circle DM,
V

whose diameter is -=- (see PROBLEM I.). Any variation of

L
1
alone will cause the resultant main current vector, /, to

lie upon the semi-circle EFN.
Similarly, when L^ alone is varied, the current 7, lies

upon the semi-circle OEP, and the resultant current 7

upon the semi-circle DF Q. If both L
l
and L^ are simul-

taneously changed, the currents 7, and 7
2
still lie on their

circles D M and E P, respectively, but the resultant

current 7 has no particular locus.

The arrows on the curves, showing the effects of a varia-

tion of the self-induction, indicate the direction of the

change as the self-induction increases.

LIMITING CASES.

This diagram enables us to see what the currents will

be in the divided circuit in the limiting cases when the

resistances or self-inductions approach infinite or zero

values. As a particular instance, suppose it happens that
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Z
2
is zero, and R

1
is very small compared with Z,. This

means that there is self-induction alone in one branch and

resistance alone in the other. The current /, would then

be represented by O H, and 7
2 by P, and the main cur-

rent, /, by the resultant of these.

Constant Potential Example. As an example, suppose
there is an incandescent lamp, Fig. 60, of 50 ohms re-

sistance -72
3 ,

and a coil whose self-induction Z, is .5

henry s shunted around the lamp, the terminals of which

are subjected to a constant difference of potential of 50

volts. What are the currents through the lamp, coil, and

FIG. 60. PROBLEM VII.

the main line ? Suppose that GO = 1000. We may calcu-

late

L--^ T~~
E 50

and =

7?
Make OP, Fig. 61, equal to

-^-
= 1, and ninety degrees

JP

behind it make OH = 7 = .1. The resultant current
L,, GO

O S is easily calculated, thus :

08 = Vo~P* + OJT = /I + .01 = 1.005, approx.



246 CIRCUITS CONTAINING

If the incandescent lamp should break, the current /
v

through it would be stopped and the main current reduced

to OH, equal to .1 amperes.

FIG. 61. CONSTANT POTENTIAL EXAMPLE, PROBLEM VII.

Constant Current Jfaample. Suppose that, instead of

being subjected to a constant potential, a divided circuit, as

Fig. 60, is supplied with a constant current. Let the main

current be maintained constantly at ten amperes. It is re-

quired to find the branch currents and the difference of

potential at the terminals. Let it have a resistance 7?
2
of

two ohms, and le.t the self-induction of the choke-coil be. 02

\
\

1O Amperes

PIG. 62. CONSTANT CURRENT EXAMPLE, PROBLEM VII.

henrys. Using the first method of solving the problem of

the divided circuit when the current is given, Problem VI.,

we may assume an impressed E. M. F. A of ten volts.

Following the same construction in Fig. 62 as in Fig. 61 for
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the solution of the constant potential example, we may
calculate

10
and -^ =

ft0 <.,

Z, G? .02 X

The resultant S is calculated thus :

7T8 = VWP* +TW = -v/25 + .25 = 5.025 amperes.

Since the main current should be ten amperes, it is neces-

sary to magnify the whole diagram in the ratio K AOK ,
in

order to find the true difference of potential at the ter-

minals, and the true branch currents. This makes the

impressed E. M. F. 10 X TOK equal to 19.9 volts
;
the cur-

rent 7, equal to 9.95 amperes ; and /, equal to .995 amperes.
Since the current and the E. M. F. are in phase, the energy
consumed by the lamp is equal to 19.9 X 9.95 = 198 watts.

The energy consumed by the choke-coil is almost nothing,

since the current /> is almost at right angles to the im-

pressed E. M. F.

If the lamp filament should break, the current 7
2
would

be suddenly stopped and the whole current OB of ten

amperes would flow through the coil. The potential 6" at

the terminals would suddenly become much greater, large

enough to overcome the E. M. F. of self-induction L
l
GO Iy

that is, .02 X 1000 X 10 = 200 volts.

Thus the choke-coil shunted around the lamp consumes

but little energy and prevents the current from being inter-

rupted when the lamp breaks. In case the lamp does

break, however, there is the sudden rise in potential as

shown above.



CHAPTER XVI.

PROBLEMS WITH CIRCUITS CONTAINING RESISTANCE
AND SELF-INDUCTION.

COMBINATION CIRCUITS.

Prob. VIII. Series and Parallel Circuits. Impressed E. M. F. given.

Solution by Equivalent R and L.

Prob. IX. Series and Parallel Circuits. Current given. Solution by

Equivalent R and L.

Prob. X. Extension of Problems VIII and IX.

Prob. XI. Series and Parallel Circuits. Entirely Graphical Solution.

Prob. XII. Multiple Arc Arrangement.

Problem VIII. Series and Parallel Circuits. Impressed
E. M. F. Given. Solution by Use of Equivalent Kesist-

ance and Self Induction.

PROBLEMS arising from combinations of series and paral-

lel circuits are readily solved by the repeated application

of the foregoing methods. Let us consider the case where

two systems of parallel circuits are joined in series, as in

Fig. 63. The resistance and self-induction of each branch

is given and the total impressed E. M. F. It is required to

find the current in the main line and in the branches.

The equivalent resistance and self-induction Ea
' and La

f

between M and N, and Rb

' and Lb
' between N and 0, are

readily found according to the formulae (352) and (353).

We can now treat the problem as that of a series circuit, as

348
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in PROBLEM III., and ascertain the impressed E. M. F.

between M and N and between N and 0.

R, L,

R a L a

R,L,

K
R 4 L 4

FIG. 63. PROBLEM VIII. AND PROBLEM IX.

Upon the impressed E. M. F., A, Fig. 64, draw the

right triangle OB A such that tan A OB = ^ "
^. .

-"'a T~ ^b

FIG. 64. PROBLEM VIII. AND PROBLEM IX.

Then B is the E. M. F. effective in overcoming the resist-

ance Ra + fib an(i maJ be divided at so as to show the

E. M. F. effective in overcoming each.

OG\CB :: E' : Rh '.
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C is the E. M. F. effective in overcoming the resistance

Ba
f

. Draw CD perpendicular to C, and complete the

T ' rt

right triangle CD, so that tan DOC = -TTT-. 6HD is the
4*

impressed E. M. F. between the points Jf and N, and ZM
the impressed E. M. F. between N and 0. Knowing the

impressed E. M. F., Ea , between M and N, we can obtain

the currents 7, and 7
a
in the branches by the method fully

explained in PKOBLEM IV. and PROBLEM V. On the diameter

0~D, the E. M. F. triangles OFD and GD are drawn

with angles of lag according to the constants of each

branch. The currents /,,/,, and 1 are found by dividing

the effective E. M. F.'s by the resistances R
l ,

7?
2 ,
and Ra

'

,

respectively. In the same way, the E. M. F. triangles D LA
and D P A are erected on the line D A, which represents

Eb ,
the effective E. M. F. between N and 0. The currents

I
s
and /

4
are then found and we have the complete solution

of the problem.

Problem IX. Series and Parallel Circuits. Current
Given. Solution by Use of Equivalent Resistance

and Self-induction.

Suppose that we have the same arrangement of circuits

as that just described and shown in Fig. 63, and that the

main current, /, is given. It is required to find the current

in each branch. The solution for the part between M and

N and for the part between N and can be obtained inde-

pendently according to the second method given in PROB-

LEM VI.

In Fig. 64, O C is drawn equal to #a'/, and CD equal to

La
'

oo I. On 0~D the E. M. F. triangles OFD, ~OGD are

drawn and the solution for branches one and two obtained.

DE is then drawn parallel to O C and equal to Rb
'

7, and

JO equal to La
'

GO I. The E. M. F. triangles, D LA and
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D P A, are then erected on D A, and the solution for

branches three and four obtained in the regular way. The

line connecting and A gives the total impressed
E. M. F., K

Problem X. Extension of Problems VIII. and IX.

The solution given in PKOBLEM VIII. may be applied to

any combination of circuits in series and parallel. Let us

consider a combination of circuits such as that shown in

FIG. 65. --PROBLEM X.

Fig. 65, having a given impressed EMF between the points

JfandP. The circuits may be divided into three parts,

MN
t NO, and OP, and the equivalent resistance and self-

induction of each obtained [see (352) and (353)]. The im-

pressed E. M. F's., Ea ,
Eb ,

Ec ,
of each portion can now be

laid off, Fig. 66, according to the method given for series

(RHR&+RC)!

FIG. 66. PROBLEM X.

circuits, PROBLEM III., and a semi-circle erected upon each,

as was done upon Ea and Eb in Fig. 64. Each portion of the
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circuit is now treated separately according to the method

for parallel circuits, PROBLEM V. In each semi-circle the

various E. M. F. triangles are drawn and the currents in the

several branches found.

If the main current is given in an extended system of

conductors, as in Fig. 65, the solution is obtained, as in

PROBLEM VII., by dividing the system into its several sets

of parallel circuits and treating the separate sets, MN,
NO, OP, independently.

Problem XI. Series and Parallel Circuits. Entirely
Graphical Solution.

In the previous treatment of the problems arising from

combinations of circuits in series and parallel it was neces-

sary to find analytically the values of the equivalent resist-

ance and self-induction of each set of parallel circuits, and

the solutions were, therefore, partly analytical and partly

graphical. They may be obtained, however, by entirely

graphical methods, if we assume some value for the current

in a particular branch or assume its impressed E. M. F.,

solve a portion of the system of conductors accordingly, and

then correct the scale as required by the given conditions of

the problem. Various ways of doing this suggest them-

selves as preferable according to the nature of the problem.

BY ASSUMING VARIOUS IMPRESSED E. M. F.'s.

Given the main current, I, in a system as shown in Fig.

67. Let us assume any value we please for the impressed
E, E,

B C D

Fro. 67. PROBLEM XI.

E. M. F., Eb ,
then erect, on a line representing Eb ,

the E.

M. F. triangles for branches one and two, and thus find
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the currents 7, ,
7

2 ,
and 7, due to this assumed E. M. F.

The value thus obtained for the main current, 7, will be

different from the given value, and the assumed E. M. F., Eb ,

must be changed in the ratio of the given value of 7 to the

value obtained from the assumed value of Eb . This amounts

to changing the scale of the drawing. The solution is thus

obtained for the part between B and C. The several

other portions C D, D E of the system are separately
treated in the same manner and thus a complete solution

obtained.

If we* were given the total impressed E. M. F., E, and

not the main current, 7, a convenient graphical solution

would be obtained by assuming some value for 7, solving
as in the previous paragraph, and then changing the scale

according to the ratio of the given value of the impressed
E. M. F. to the value thus obtained.

BY ASSUMING THE CURRENT IN CERTAIN BRANCHES.

Instead of assuming the E. M. F. impressed at the ter-

minals of each part of the system, we may assume the cur-,

rent flowing in any one branch of each parallel set of con-

ductors. The complete graphical solution by this method
of a combination circuit representing in Fig. 68 is given,

FIG. 68. PROBLEM XI.

to illustrate the principles already given. The total im-

pressed E. M. F., E, is given.
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In Fig. 69 any assumed line A is drawn to represent

the current in the branch whose resistance and self-induc-

FIG. 69. PROBLEM XI.

THE SOLUTION FOB CIRCUITS

BETWEEN A AND B, FiGc (

FIG. 70. PROBLEM XI.

THE SOLUTION FOR CIRCUITS

BETWEEN C AND D, FIG. 68.

tioii are R, and Z, . A is then multiplied by ^, and pro-

duced to B. Then (TB = R, 7, is the effective E. M. F. in

branch one. Draw B C perpendicular to B in the direc-

tion of advance and make it equal to Z, <7j. Then C is

the impressed E. M. F. necessary to drive the assumed

current through branch one. Now having this impressed
E. M. F., we can draw the E. M. F. triangle, OD C, for

branch two, and obtain the current E flowing in the second

branch by dividing D by R^. The total current fOF
is then the vector sum of Z

a
and Z

2 , or of OA and E.

For the parallel system between 1) and C (Fig. 68), the

same process is followed, and in Fig. 70 O A is first assumed

as the current branch in three, and F finally found to

be the total current flowing between C and D (Fig. 68).

Since these two parallel systems are in series, the total

current, TTF (Fig. 69), flowing between A and B (Fig. 68),

must equal the total current, O F(Fig. 70), flowing between

C and D (Fig. 68). Hence Fig. 70 is magnified until ~0~F

becomes as large as OF, Fig. 69, and is represented in

Fig. 71. Next the two figures 69 and 71 are combined, as



RESISTANCE AND SELF INDUCTION.

shown in Fig. 72, so that 0' F' is parallel with OF, sinco

each represents the same current /. O C ', the vector sum of

FIG, 71. PROBLEM XI. FIG. 70 ENLARGED.

and Eta ,
is the total impressed E. M. F. at the termi-

nals A and I) necessary to send the current /. If thia

FIG. 72. PROBLEM XI.

figure is now magnified until C' is equal to the given

impressed E. M. F., the solution of the problem is complete
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and we have found the currents in each branch for the

j^iven impressed E. M. F.

Problem XII. Multiple-arc Arrangement.

Graphical solutions for circuits in series and for circuits

in parallel have been separately explained at length and it

has been shown how the solution of any combination of

circuits in series and parallel may be obtained by dividing

the system into its separate parts of series and parallel ar-

rangements and successively applying the foregoing meth-

ods. There are countless combinations which might arise,

but the solutions of all depend upon the principles already

given, and it will suffice to further illustrate them by their

application to one more problem of combined circuits.

Let us consider a system of parallel circuits, each with

resistance and self-induction, extending between two mains

containing resistance and self-induction. Such a system is

shown in Fig. 73. The circuits 1, 2, 3, etc., contain resist-

FIG. 73. PROBLEM XII.

ance and self-induction R^L^R^L^, /?
3 A> etc., respec-

tively. The resistance and self-induction of the mains are

PL,

FIG. 74. PROBLEM XII.

Ma and La for the portion a, Rb and Lb for the portion b,

between circuits 1 and 2, RG and Lc for the portion c, etc.
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The equivalent resistance and self-induction of circuit one

and that portion of the system beyond circuit one namely,

b, c, d, etc., and 2, 3, 4, etc. is R' L'
;
for circuit two and

the portion of the system beyond, the equivalent resistance

FIG. 75. PROBLEM XII.

and self-induction are E" and L" ; for circuits three and

beyond they are R" f and L'"
;

etc. These values of the

equivalent resistance and self-induction are computed by
successive applications of the formulae (352) and (353), be-

ginning at the most distant end of the system. The equiva-

lent resistance R"" and self-induction L"" are found by

adding R^ and Z, to Re and Le , respectively, and finding the

equivalent resistance and self-induction when combined

in parallel with circuit four. R" ! and L1"
are found by

adding R"" and L"" to Ra and Ld and finding the equiv-

alent resistance and self-induction of this when combined

in parallel with circuit three. R" and L", and R f and L\
are similarly found.

Let us now replace by a simple circuit with resistance

and self-induction R' and L' that part of the system to

which it is equivalent. The system then reduces to a series

circuit (Fig. 74), and its solution is obtained by the method

for series circuits, PROBLEM III. The complete solution for

this problem is given in Fig. 76.

Draw ~6~A = K On 03" erect the right triangle OB A
L -4- L'

so that tan A B
-^
--

-j^
GO. Find the point G such

that

\R'.
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Draw 2) C perpendicular to O B, and complete the triangle

O CD so that tan D O C = -~- co. Then Ea represents the

FIG. 70. PROBLEM XII.

impressed E. M. F. of the portion a of the circuit, and El
the

impressed E. M. F. of the remaining portion.

j~t

tan AD E -
GO.

Now let us take the system as originally shown in Fig.

73, and replace by a simple circuit with resistance It" and

self-induction L" that part of the system to which it is

equivalent. The system then reduces to the form showu
in Fig. 75. The construction of Fig. 76 is continued as be-

fore.

On DAy which represents El , the E. M. F. impressed at

the terminals of the two parallel circuits, draw the right

triangle DFA so that

Divide DF at G so that

: R
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Construct the right triangle HD G so that

tan HD G = ~ oo. .

Then Eb is the E. M. F. impressed in the portion b of the

circuit, and E^ that impressed on the part of the circuit

beyond b.

Repeated applications of this method of construction

finally give the complete solution of the problem, and we

have EH Ett E^, etc., as the E. M. F.'s impressed on the

circuits 1, 2, 3, etc.
;
and Ea ,

Ebt Ec , etc., as the E. M. F.'s

impressed on the portions a, b, c, etc.

Knowing the impressed E. M. F. on any simple portion

of the circuit, a triangle of E. M. F.'s can be drawn and the

current obtained. The E. M. F. triangles onEa , Eb , and E
are already drawn and the effective E. M. F.'s, Ra la , Rblb ,

Rc lc ,
found. The current is found by dividing the effec-

tive E. M. F. by the resistance. In a similar way the cur-

rent in each of the branch circuits 1, 2, 3, etc., may be

found. For instance, on /, the E. M. F. triangle OLN is

drawn. The effective E. M. F, ZJV, divided by the resist-

ance gives the current, /
3
.

The solution of this problem by entirely graphical
methods could be gone through with, as in some of the

previous problems, and likewise the problem of the same

arrangement of circuits with the current in some portion of

the circuit given.



CHAPTER XVH.

PROBLEMS WITH CIRCUITS CONTAINING RESISTANCE AND
SELF INDUCTION. MORE THAN ONE SOURCE OF

ELECTROMOTIVE FORCE.

Prob. XIII. Electromotive Forces in Series.

Prob. XIV. Direction of Rotation of E. M. F. Vectors.

Prob. XV. Electromotive Forces in Parallel.

Prob. XVI. Electromotive Forces having Different Periods.

Problem XIII. Electromotive Forces in Series.

SUPPOSE that in different parts of a single circuit there

are two sources of harmonic E. M. F. It is required to

find the current which flows and the various falls of poten-

tial in the different parts of the circuit.

FIG. 77. PROBLEM XIII.

Let the circuit be that represented in Fig. 77, where E^

and EI are two different sources of harmonic E. M. F of the

same period. Draw the lines OA and OB, Fig. 78, to

represent the E. M. F.'s E^ and E^ respectively.

The total E. M. F. acting in the circuit is the geometric

sum of A and B> that is, the diagonal O C (see page 213).
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Eegarding O C as the impressed E. M. F. in a single circuit,

whose resistance is 2 JR, and self-induction 2 L, we may

FIG. 78. PROBLEM XIII.

construct the triangle of E. M. F.'s and thus find the current.

Make the angle COD equal to tan' 1

-^p Then ~0~D

equals 2 2 R, and D G equals I GO 2 L. Dividing 1) by
2 R, we obtain the current /, or O E. To obtain the various

falls of potential between the points A B, B C, and ED
(Fig. 77), divide O D at F and G into parts proportional to

HI , R, ,
and Rz ,

and D G at H and /into parts proportional

to Z, , Z3 ,
and L

3
. This determines the points J and ./Tand

thus gives the falls of potential O J, JK> and K (7 for each

part of the circuit.

Problem XIV. Direction ofRotation of E. M. F. Vectors.

When two harmonic E. M. F/s of the same period are

connected in series, the question may arise whether it

may not happen that the vectors representing the two

E. M. F.'s revolve in opposite directions. It is evident that,

if they should revolve in opposite directions, the resultant
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at any instant, instead of lying on a circle, lies upon an

ellipse (Fig. 79). Here O B is an E. M. F. vector revolving

FIG. 79. PROBLEM XIV.

counter-clockwise, and O A one revolving with the same

angular velocity in the opposite direction. The resultant

O C must always lie upon the ellipse. The major axis has

a fixed direction O D which bisects the angle between OA
and B. The magnitudes of the semi-major and the semi-

minor axes are equal, respectively, to the arithmetical sum

and the arithmetical difference of the vectors A and O JL

If, instead of drawing A in the direction indicated,

we had drawn it in the position O G (making the angle

G H equal to A O H\ and caused it to revolve counter-

clockwise in the same direction as O ft, the projections,

O II, of O A or O G would be the same at every moment.

Consequently the vector O G revolving counter-clockwise

represents the same E. M. F. at every moment as the vector

A revolving clockwise, and may therefore be substituted



RESISTANCE AND SELF INDUCTION. 263

for it. But the resultant of G and OB gives /, whose

locus is a circle. Thus the projection of 1 is the same

as the projection of C\ and the ellipse may therefore be

replaced by the circle.

It is never necessary, therefore, to consider vectors re-

volving in opposite directions, for a vector revolving in one

direction can always be replaced by a vector revolving in

the opposite direction.

Problem XV. Electromotive Forces in Parallel.

Suppose that in each branch of a divided circuit, such

as that represented in Fig. 80, there is a source of har-

monic E. M. F., and that all these E. M. F.'s have the same

period ;
it is required to find the currents in the branches.

The currents may be found by making use of the gen-

eral principle* that, if the currents due to each E. M. F.

acting separately can be found, the current which flows

when all the E. M. F.'s are acting together is the geometri-

cal sum of all these partial currents.

-
FIG. 80. PROBLEM XV.

To find the currents due to all the E. M. F.'s acting to-

gether we may then proceed by regarding each branch, 1,

2, and 3, in turn, as the main line in which there is the im-

pressed E. M. F., and the other branches as a divided circuit.

* See Mascart and Joubert's Electricity and Magnetism, Vol. 1, Art. 202.
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Then, considering El
to be the only E. M. F. acting, the

problem of finding the partial currents //, 7
a ',

and /,' is

readily solved by the methods already given. Next, con-

sidering E^ as acting alone, we may find the partial currents

//', 79 ", and I,", and finally we find //", /,'", and //", due

to E^ acting alone.

The actual currents in the branches 7j ,
7a ,

and 7
3
when

all the E. M. F.'s act together, by the principle just stated,

must be equal to the geometrical sum of the partial cur-

rents ; that is,

I
v geometrical sum of 7/, 7/, and 7

3

'

;

T " " " J" T" arid T"2 Z
J.

l ,
./

,
tiUU

% ,

T " " " T" T'" and /"'"-/ 3
2

1 > A >
d'nU A *

Problem XVI. Electromotive Forces Having Different

Periods.

Let there be two impressed harmonic E. M. F.'s in

series having periods which bear a ratio of three to one.

It is required to find the resultant impressed E. M. F. and

the current that flows in the circuit.

In Fig. 81 let OA represent maximum value of E
l ,
and

O B that of E^ , they being in the ratio of one to two. As

O A revolves around its circle three times as fast as OB,
O A arrives at O C when O B arrives at O D, and the re-

sultant O /^traverses the curve EF G H. If the projection

of the resultant vector F is taken upon the axis O Y at

equal intervals of time, we may thus plot the curve of re-

sultant E. M. F., Fig. 82. This E. M. F. curve is the plot

of the equation

e = E
l
sin 3 GO t -f- 7^ sin GO t.

The curve is composed of two simple harmonic components.
To find the current which this resultant E. M. F. causes

to flow, it is only necessary to find the currents which each
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component E. M. F. acting separately would cause, and then

add these together geometrically. If there is self-induction

in the circuit, the tangent of the angle of lag of the com-

FIG. 81. PROBLEM XVI.

ponent currents behind their respective E. M. F.'s is
GO

Let P B be the E. M. F. triangle upon E, ,
and ~O~J the

current J
a . J must lie upon the semi-circle O JM, whose

TT
diameter is = ?-

(see PROBLEM
I.).

The angle of lag, A O Q,

of the component current due to the E. M. F., E^ , is now

determined, since its tangent is three times the tangent of

P> P, thus,
3 L
R Also the current OK

y or 7, ,

due to the E. M. F. O A, or ^ , is now determined, since

Jfmust lie upon a semi-circle OK'N whose diameter OlV

equals $ of OM. For 0~N =
L G>1

1
3 L GOy

;
and OM =
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= V=^, and thus OM = 6 ON. The resultant of OK

and O J gives (9 L. and this vector always follows the curve

marked " Resultant Current." If the projection of L upon

the axis OY is taken at regular intervals as L moves

around its curve, we may obtain the current curve Fig. 82.

PIG. 82. PROBLEM XVI.

This current curve is composed of two simple harmonic

curves each due to a simple harmonic E. M. F., but the two

component current curves lag behind their respective com-

ponent E. M. F. curves by different angles. For this reason

the resultant current curve is not symmetrical with the re-

sultant E. M. F. curve.



CHAPTER XVIII.

INTRODUCTORY TO CIRCUITS CONTAINING RESISTANCE
AND CAPACITY.

CONTENTS: Problems with R and C analytically and graphically analo-

gous to problems with R and L. Triangle of E. M. F.'s for a single

circuit containing resistance and capacity. Impressed E. M. F.

Effective E. M. F. Condenser E. M. F. Direction shown from differ

ential equations. Graphical representation. Two methods used.

First method (the one used throughout this book), employing E. M. F.

necessary to overcome that of condenser. Second method, employing
E. M. F. of condenser. Further identification of analytical and

graphical relations. Mechanical analogue.

WHEN Chapter III., giving the analytical treatment of

circuits containing resistance and self-induction, is com-

pared with Chapter V., which gives the corresponding

analytical treatment of circuits containing resistance and

capacity, the similarity leads us to infer that the graphical

solutions of problems will be very analogous in the two

cases. Although the analogy is very close, which fact

makes it much easier to follow the solutions for resistance

and capacity and is a great help, yet, in many respects, the

contrast is so marked that it is considered advisable, in

discussing problems with circuits containing resistance

and capacity, to give the solutions for the same arrange-

ment of circuits as those which have been given for circuits

containing resistance and self-induction in the previous

pages, in order that the points of similarity and difference

may be clearly understood.

267
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TRIANGLE OF ELECTROMOTIVE FORCES FOR A SINGLE CIRCUIT

CONTAINING RESISTANCE AND CAPACITY.

In Chapter V., in which circuits containing resistance

and capacity were analytically treated, it was shown [equa-

tion (78)] that when the impressed E. M. F. is harmonic,

that is,

e = E sin <vt
t

the resulting current which flows is also harmonic and is

(78)

*=

The charge of the condenser is likewise harmonic and

is [equation (79)]

f= 1-
si*

[" + tan- gjL-
-
90]

.

These equations for the current and charge were de-

rived from the differential equation of electromotive forces

which may be written in any of the forms [see (55)]

Ci
t

dt

de di^^

Here e is the instantaneous value of the impressed

E. M. F. of the source ;
E I is that part necessary to over-

fid
t

come the ohmic resistance; and ^
or

-^
the E. M. F.-

necessary to overcome the E. M. F. of the condenser.
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Let the vector, O A, Fig. 83, represent the harmonic

impressed E. M. F. of the source. Then, by equation (78),

FIG. 83. TRIANGLE OF ELECTROMOTIVE FORCES.

FIRST METHOD THE ONE USED THROUGHOUT THIS BOOK EMPLOYING
E. M. F. TO OVERCOME THAT OF THE CONDENSER.

we see that the current must be represented by a vector,

OB, in advance of OA by an angle 0, or tan
oo

The effective E. M. F., being equal to R I, has the same di-

rection as the current and must be represented by a vector

C equal to the current vector, OB, multiplied by R.

The E. M. F. to overcome that of the condenser, having the

instantaneous value
-^ ,

is at right angles to the current,

and must therefore be represented by the vector CA per-

pendicular to OB.

It may be shown that this E. M. F.
^-

is at right angles

to the current by the preceding equations, thus :

\dt E
C
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To simplify this expression substitute

and = tan' 1

p

The equation then becomes

(354) TT = -7r- sin [< + - 901.
O C 69

I- _J

This equation shows that the E. M. F., ~~, to overcome
L>

that of the condenser is ninety degrees behind the current,

and that the maximum value of this E. M. F. is -^ .

Coo

The vector (Fig. 83), whose length is 7r
-

, ninety degreesO GO

behind the current, B, therefore represents the E. M. F.

to overcome that of the condenser.

The E. M. F. of the condenser is equal and opposite to

that which is necessary to overcome it, and is consequently

ninety degrees in advance of the current represented by the

vector, 2~G', Fig. 84.

THE METHOD TO BE USED IN THE GRAPHICAL SOLUTIONS OF

PROBLEMS FOR CIRCUITS CONTAINING KESISTANCE AND

CAPACITY.

In the graphical treatment of problems with circuits

containing resistance and capacity, just as was the case with

circuits containing resistance and self-induction, there are

two methods of drawing, each equally correct, which will,

if followed throughout, give identically the same results.

These two methods arise according to whether the E. M. F.

necessary to overcome the E. M. F. of the condenser is con-
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sidered, or the E. M. F. of the condenser. The first method

is illustrated by Fig. 83
;
the second by Fig. 84.

In order that uniformity may exist throughout all the

diagrams which represent cases where both self-induction

and capacity are considered in circuit, since the method of

FIG. &4. TRIANGLE OF ELECTROMOTIVE FORCES.

SECOND METHOD, EMPLOYING E. M. F. OF CONDENSER.

drawing was adopted which considered the E. M. F. neces-

sary to overcome the self-induction, here we are obliged to

adopt that method which employs the E. M. F. necessary

to overcome the E. M. F. of the condenser, as represented in

Fig. 83.

That the construction of the figures fulfils the condi-

tions expressed by the current equation (78) may be shown

again by a further comparison of the relations. Thus in

Fig. 83 or 84 it is evident that

tan A C = 00
and this corresponds to the angle of advance. Again, the

impressed E. M. F., O A, being the hypotenuse of the

triangle O A C, is equal to the square root of the sum of

the squares of the two sides, and, therefore,

'

oA = yoc +
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that

and
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is, E^ffr^^-iJR^^
E

This is seen to correspond to the maximum value of the

current given in equation (78).

MECHANICAL ANALOGUE.

the E. M. F. of the condenser is at right angles to

current may, perhaps, be best understood by the phy-
sical conception of the part played by the condenser in a

circuit. A good mechanical analogue of the condenser is

an air-chamber, as represented in Fig. 85, in which the air

is first compressed and then expanded.
The piston P moves back and forth, with

an harmonic motion, we will say, first

compressing and then expanding the

air in the chamber. When at its central

position, the air is at the atmospheric

pressure. The current may be repre-

sented by the motion of the piston, or

of the water in the tube which trans-

mits the pressure to the air-chamber.

The charge of the condenser may be

represented by the volume of water

which enters or leaves the air-chamber,

the charge being taken as zero when

the piston is at its central position, that

is, when the air is at the atmospheric

pressure. Considering the moment
FIG. 85.-MECHANICAL when the piston is in the central posi-
ANALOGUE OF A CON- ,. . i JT i

tion P, moving upward, the charge is
DENSER.

zero, and the current is a maximum, as

here the piston moves with its maximum velocity. The cor-
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responding points on the curves, Fig. 84, are Zfand K\ that

is, the positive current is represented by the upward motion

of the piston. When the piston arrives at Q, the upper end

of the stroke, the current is zero and is represented by the

point N on the curve. The charge is here a positive max-

imum, and during the previous quarter of the stroke the

compressed air has exerted an outward pressure, cor-

responding to the E. M. F. of the condenser, opposed to

the current. This pressure reaches a negative maximum,

together with the charge, when the current is zero. This

corresponds to the point M on the curve. During the re-

turn of the piston to the central position, both the current

and the pressure are in the same negative direction until

the current becomes a negative maximum, at the central

position, where the pressure becomes zero and then changes

sign. This example shows how the pressure exerted by
the air, corresponding to the E. M. F. of the condenser, is

just ninety degrees in advance of the current. The pres-

sure which must be exerted upon the piston to overcome the

pressure of the air chamber, corresponding to the E. M. F.

necessary to overcome that of the condenser, is evidently

equal and opposite to the pressure of the air-chamber, and

lags, therefore, ninety degrees behind the current. As be-

fore explained, Fig. 83 represents the manner of drawing
when the E. M. F. necessary to overcome that of the con-

denser is considered, and Fig. 84 when the E. M. F. of the

condenser is considered.



CHAPTER XIX.

PROBLEMS WITH CIRCUITS CONTAINING RESISTANCE AND
CAPACITY.

Prob. XVII. Effects of the Variation of the Constants R and C in a

Series Circuit. # varied. C varied.

Prob. XVIII. Series Circuit. Current given. Equivalent It and G in

Prob. XIX. Series Circuit. Impressed E. M. F. given.

Prob. XX. Divided Circuit. Two Branches. Impressed E. M. F.

given. Equivalent E and G for Parallel Circuit.

Prob. XXI. Divided Circuit. Any Number of Branches. Impressed

E. M. F. given. Equivalent R and G obtained for

Parallel Circuits.

Prob. XXII. Divided Circuit. Current given. First Method: Entirely

Graphical. Second Method: Solution by Equivalent R
and C.

Prob. XXIII. Effects of the Variation of the Constants R and G in a

Divided Circuit of Two Branches.

Prob. XXIV. Series and Parallel Circuits. Impressed E. M. F. given.

Solution by Equivalent R and G.

Prob. XXV. Series and Parallel Circuits. Current given. Solution by

Equivalent R and G.

Prob. XXVI. Series and Parallel Circuits. Entirely Graphical Solution.

Prob. XXVII. Multiple-arc Arrangement.

Problem XVII. Effects of the Variation of the Constants
R and C in a Series Circuit.

THE EESISTANCE VARIED.

WHEN the ohmic resistance is varied in a circuit con-

taining only resistance and capacity, the current is changed
374
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and it is of interest to investigate just how it changes
both in magnitude and in direction. The triangle A C,

Fig. 86, represents the triangle of E. M. F.'s for the circuit

CEw

FIG. 86. VARIATION OF RESISTANCE AND CAPACITY IN A SERIES
CIRCUIT. PROBLEM XVII.

when the resistance is R. The current B is equal to C
divided by It. Draw a line D, of indefinite length, perpen-

dicular to the E. M. F. A in the direction of advance.

The angle D C is the complement of A C, and is, there-

fore, tan~
J CR GO. Draw ^^perpendicular to OB and let

it meet 01) at E. The line ZT/^then equals CR &?/; for,

B equals 7, and tan E B equals CR GO.

It can be shown that the hypotenuse E of this triangle

is equal to C EGO, and is therefore a constant entirely inde-

pendent of any variation in the current /, or resistance H.

Taking the square root of the sum of the squares of the

sides B and B E, we obtain

WE=

Substituting for / its value
E

, we obtain

and, therefore, OE= CEco.
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Now since the side OB of the right triangle QBE always

represents the current /, and the hypotenuse OE is inde-

pendent of current or resistance, it follows that the current

is always represented by a vector B inscribed in a semi-

circle QBE for any possible variation in the resistance.

In the figure the arrow indicates the direction of variation

as the resistance increases.

In the limiting cases when R is infinite or zero, we see

by this figure the limiting values of the current. When R
is infinite, the current is evidently zero. When 7? ap-

proaches zero, OB approaches E, and in the limit the

current becomes

1= CEoo.

When the circuit contains no ohmic resistance, we see, first,

that the impressed E. M. F. is equal to -~
,
the E. M. F.

of the condenser ; and, second, that the current is 90 in

advance of the impressed E. M. F. These relations, here

geometrically shown, are analytically expressed in equa-

tion (354).

THE CAPACITY or THE CONDENSER VARIED.

Suppose that the capacity of the condenser in the cir-

cuit is varied while the resistance remains the same
;
we

wish to find how the current changes.

In the same figure, 86, prolong the lineEB until it meets

the impressed E. M. F. ~OA prolonged at F. Then

equals 77^5 ,
since tan B F equals 77-75 .C JK GO GR GO

The hypotenuse 1 is, therefore,
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From the value for 7 iu (82) it follows that

Hence, O~F = .

Since the hypotenuse O F is independent of the current

/ or the capacity (7, and is a constant for any variation in

C, it follows that the current is always represented by a

vector OB inscribed in the semi-circle O BF for any pos-

sible value of the capacity. In the figure the arrow indi-

cates the direction of variation as the capacity increases.

In the limiting cases when C is zero or infinite, we see

from the figure the value of the current. When C ap-

proaches zero, the current evidently approaches zero.

When C approaches infinity (which is equivalent to having
no condenser in the circuit), the current vector OB ap-

w
proaches OF, and, in the limit, /= -p,

and the current

follows Ohm's law.

That the construction of Fig. 86 is consistent with the

equations is further shown from the following relations.

(355) WF*= (EB + 7TP)' = CR GJ 7+ ~

(356) ~OE*+ ~OF* = <7
2
J5" oo*+

~ =
jpfl + C*

Equating (355) and (356), we find

T
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a result which is identical with that analytically expressed
in equation (82).

Problem XVIII. Series Circuit. Current Given.

Let there be a circuit, Fig. 87, having in series n differ-

ent resistances Rlt J?2 , etc., and n condensers with ca-

pacities (7, , 6y

a ,
etc. It is required to find the impressed

E. M. F. necessary to cause a current 1 to flow. In Fig.

88, make A equal to the current flowing. Multiply this

FIGS. 87 AND 88. PROBLEM XVIII. AND PROBLEM XIX.

by R l y
and lay off B equal to R

l /, which is, then, the ef-

fective E. M. F. to overcome the resistance J?. Draw B C

perpendicular to A in the negative direction, and make

the angle B C = 0,
= tan-

1

^
1

R ^ Then B C is the

triangle of E. M. F.'s for that part of the circuit between A
and B, Fig. 87.

The construction of the figure is similar to that of Fig.
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54, in PROBLEM II., but differs from Fig. 54 in the fact that

the E. M. F. triangles in the present construction are so

drawn that the various currents are in advance of their re-

spective electromotive forces. The triangles CD E, etc.,

are drawn and the construction completed similar to the

corresponding case, PROBLEM II., of a series circuit with

self-induction. We thus find the impressed E. M. F. to

be 0~G.

EQUIVALENT EESISTANCE AND EQUIVALENT CAPACITY IN SERIES.

Suppose that we replace all the resistances in Fig. 87

by a single resistance, and all the condensers by a single

one
;
it is required to find that resistance and capacity which

will allow the same current to flow.

It is evident that if ~0~K, Fig. 88, is R'l, and K~G is

777 , where R' and C' represent, respectively, the equiva-
C/ co

lent resistance and equivalent capacity, the same current

0~A will flow. But OK = / 2 R, and KG = *2~.
GO 6

It therefore follows that R' = 2 R, and ^ = 2
-g.

We

may write it C' = T- and have the equivalent capacity

equal to the reciprocal of the sum of the reciprocals of each

separate capacity.

Problem XIX. Series Circuit. Impressed E. M. F.

Given.

The circuit being the same as in Fig. 87 in the previous

problem, it is required to find the current and the fall of po*

tential through each of the various parts of the circuit when

the impressed E. M. F. is given. From the remarks on equiv-

alent resistance and capacity immediately preceding, it is
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evident that the same current will flow if these equivalents

are substituted for the separate resistances and capacities.

The triangle KG m iy now be drawn and the current

found. From this point we may proceed as in the preced-

ing problem to find the various falls of potential C, C E>
and EG.

Problem XX. Divided Circuit. Two Branches.
Impressed E. M. F. Given.

Let us consider the problem of a divided circuit having
two branches in parallel, as indicated in Fig. 89. Each

c, R,

A

IN I

Ca

FIG. 89. PROBLEM XX.

branch contains resistance and capacity, and there is an

impressed E. M. F., E, between the terminals M and N\ it

is required to find the main current, /, and the currents 1\

and /, in the branches.

This problem corresponds very closely to PROBLEM IV.,

in which case the branches contain self-induction instead

of capacity. Fig. 90 represents the solution of the present

problem, and corresponds to Fig. 56, PROBLEM IV. The

difference is that the E. M. F. triangles B A and OCA,
Fig. 90, lie on the positive or advance side of the impressed
E. M. F. A, instead of on the negative side as in Fig. 56.

Otherwise the construction by which we obtain the two

currents D and E, and the resultant main current,

0~F
9
is identical with that in PROBLEM IV.
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Suppose that, instead of the two parallel branches just

considered, a single circuit be substituted for them whose

resistance, R' y
and capacity, C', is such that the same cur-

FIG. 90. PROBLEM XX.

rent as before will flow in the main line. The triangle of

E. M. F.'s for this equivalent circuit must be G A, Fig.

90, since the impressed E. M. F. is A, and the effective

E. M. F. is O G in the direction of the current, and the

E. M. F. G A, to overcome that of the condenser, is at right

angles to the current. We may write, therefore, R'l for_ _
G, and -777 for G A. This equivalent resistance and

C GO

capacity may be expressed in terms of the resistances and

capacities of the branches, but the determination of these

values will be deferred until after the discussion of the fol-

lowing problem.
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Problem XXI. Divided Circuit. Any Number of
Branches. Impressed E. M. F. Given.

Let the divided circuit, MN, Fig. 91, have n branches

in parallel, each containing resistance and capacity, with an

impressed E. M. F., E, between the terminals. It is re-

quired to find the main current /.

c,

FIG. ftl. PROBLEM XXI. AND PROBLEM XXII.

The construction of Fig. 92 is similar to that of Fig. 58,

in PROBLEM V., except that the E. M. F. triangles and all

the branch currents are laid off in the direction of advance

and not of lag. The main current L is the geometrical

resultant of all the branch currents OF, G, OH, and

01, as before.

FIG. 92. PROBLEM XXI. AND PROBLEM XXII.

This diagram gives the complete solution of the problem
of the divided circuit containing resistance and capacity.

Here, too, as was the case with the divided circuit contain-
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ing resistance and self-induction, it is evident that the

maximum main current, /, is greater than any of the branch

circuits.

EQUIVALENT EESISTANCE AND CAPACITY OF PARALLEL CIRCUITS.

In this case, as in the previous one, we may suppose a

single circuit substituted for the parallel branches, having
such a resistance, 12'

',
and capacity, 6", that the current in the

main line is not altered in magnitude or phase. The values

of this equivalent resistance and capacity in terms of the

resistances and capacities of the branches may be found by

proceeding in the same way as was done to obtain the

values of the equivalent resistance and self-induction of

parallel circuits, PROBLEM V. Equations are formed by

taking the projections of the currents first upon the line

OA
t Fig. 92, and then upon a line perpendicular to A.

In these equations, values for /, /,,/,, etc. ; cos 0, cos 6
l ,

cos 2 ,
etc.

;
sin 0, sin 0, ,

sin 3 , etc., obtained from the

geometry of the figure, are substituted, and, after opera-

tions similar to those used in obtaining equivalent resist-

ance and self-induction, the following expressions are ob-

tained for the equivalent resistance and capacity of parallel

circuits.

(356 a)

(3566) and

^ B
where A =

<7
3

<
s

^MVB fl s ^ I

and GJ =



284 CIRCUITS CONTAINING

The main current is in advance of the impressed E. M. F.

by an angle 6 such that

B GJ
tan = -

.

The complete proof of this was first given by the authors

in the Philosophical Magazine for September, 1892. These

results may be obtained from the general expressions

for equivalent resistance, self-induction, and capacity which

are discussed in PROBLEM XXXI.

Problem XXII. Divided Circuit. Current Given.

Suppose that we have a number of circuits, each with

resistance and capacity, connected in parallel as in Fig. 91,

and we know the value of the current / in the main line.

We wish to find the current in the several branches. There

are two solutions similar to the two given for the corre-

sponding case of circuits with self-induction.

FIRST METHOD. ENTIRELY GRAPHICAL.

By assuming any value we please for the impressed
E. M. F., E) we may solve as in the foregoing problem.
The scale of the drawing must then be changed in the

ratio of the given value of the main current, 7, to the value

of 1 thus obtained according to the assumed impressed
E. M. F.

SECOND METHOD. BY USE OF EQUIVALENT EESISTANCE ANE

CAPACITY.

The problem may be otherwise solved by use of equiva-

lent resistance and capacity of parallel circuits as given in

(356 a) and (356 b). OM, Fig. 92, is laid off equal to R'L
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The line M A is drawn perpendicular to M and equal to

JTT--
The hypotenuse OA is the impressed E. M. F.

The further construction is the same as in the foregoing

problem. Upon A the E. M. F. triangle for each branch

is drawn and the current and angle of advance found.

Problem XXIII. Effects of the Variation of the Constants

K and C in a Divided Circuit of Two Branches.

If we compare PROBLEMS I. and XVII., in which the dis-

cussion is given of the effects of the variation of the con-

stants R and L, and R and C in series circuits, we see that

FIG. 93. VARIATION OF RESISTANCE AND CAPACITY IN A DIVIDED

CIRCUIT. PROBLEM XXIII.

the two problems are similar, and that the constructions in

Figs. 52 and 86 are the same except for direction, the
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former being in the direction of lag and the latter in the

direction of advance. The present problem is similar to

PROBLEM VII., in which the effect of the variation of R and

L in a divided circuit is considered. The construction is

given in Fig. 93, which explains itself, and is exactly

similar to that given in Fig. 59, which was fully described

in PROBLEM VII. The arrows in the figure indicate the

direction of the change as the resistance or capacity in-

creases.

Problem XXIV. Series and Parallel Circuits. Impressed
E. M. F. Given. Solution by Use of Equivalent Resist-

ance and Capacity.

Problems arising from combinations of series and

parallel circuits with resistance and capacity are solved by
the repeated application of the methods used for the fore-

going simple problems in the same way as were solved the

problems involving combinations of circuits with resistance

and self-induction. Let us consider the case in which two

systems of parallel circuits are joined in series, as in Fig.

94. The resistance and capacity of each branch and the

E

FIG. 94. PROBLEM XXIV.

total impressed E. M. F. are given. It is required to find the

current in the main line and branches. The problem is

similar to PROBLEM VIII., and the solution given in Fig. 95
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is obtained by a construction similar to Fig. 63. The

equivalent resistance and capacity Ea
f and Caf between M

andNt
and R\! and Cb

' between N and 0, are calculated ac-

cording to (356 a) and (356 6). The impressed E. M. F.'s Ea

and Eb are now found according to the method for series

circuits, PROBLEM XIX. The part between M and N and

FIG. 95. PROBLEM XXIV.

the part between N and are now separately treated by
the method of parallel circuits, PROBLEM XXI. The con-

struction is shown clearly by the figure.

A more extended system of circuits in series and parallel

is solved by the same methods.

Problem XXV. Series and Parallel Circuits. Current
Given. Solution by Use of Equivalent Resistance
and Capacity.

Let us suppose the same arrangement of circuits as that

shown in Fig. 94, and that the main current, /, is given.

It is required to find the current in each branch. The

parts between M and N and between N and may be

separately solved according to the second method given in

PROBLEM XXII. The solution of any number of circuits in

series and parallel could be readily obtained by the same

method.
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Problem XXVI. Series and Parallel Circuits. Entirely
Graphical Solution.

In the foregoing treatment of problems involving series

and parallel combinations of circuits containing resistance

and capacity it was necessary to find analytically the

values of the equivalent resistance and capacity of each set

of parallel circuits, and the solutions were, therefore, partly

analytical and partly graphical. They may be obtained, as

in the corresponding cases of combinations of circuits with

resistance and self-induction (see PROBLEM XI.), by entirely

graphical methods by assuming the value of the current in

a particular branch or assuming its impressed E. M. F.

After solving in this way, the values assumed and the scale

of the diagrams must be altered to agree with the given con-

ditions of the problem. Figs. 96, 97, 98, and 99 give the

FIGS. 96 AND 97. PROBLEM XXVI.

construction for the entirely graphical solution of two par-

allel sets of circuits connected in series, as in Fig. 94. The

method is to solve separately each parallel set of circuits

by assuming some value for the impressed E. M. F. or for

one of the branch currents. Figs. 96 and 97 give the con-

struction for the solutions of the parts MN and NO, re-

spectively, starting with assumed values for the branch

currents /, and 7
3

. Fig. 97 is then magnified, as shown in
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Fig. 98, until the main current I is the same size as in Fig.

96. The two figures, 96 and 98, are now combined in Fig. 99

so that O-Fis parallel to 0' F', since each represents the

FIG. 98 PROBLEM XXVI.

current /. We thus find E, the impressed E, M. F. which

will cause the current / to flow. If the value of the im-

pressed E. M. F. had been given, the scale of the diagram

FIG. 99. PROBLEM XXVI.

could be altered until E equaled the given value of the

E. M. F. The figure would then give the value of the main

and branch currents which flow when there is this given

E. M. F.

Problem XXVII. Multiple-arc Arrangement.

Of the many arrangements in which circuits with resist-

ance and capacity may be combined, let us consider, as a
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further example, the arrangement in multiple arc, as shown

in Fig. 100, The solution is obtained by dividing the

R c.

Fm. 100. PROBLEM XXVII.

system into different parts and successively applying the

foregoing solutions for series and for parallel circuits. This

U c,

^VVs^/WEES^/A-E^^V^rEHS-J^V/,

FIG. 101. PROBLEM XXVII.

problem and its solution are similar to PEOBLEM XII., and

it will, therefore, suffice to merely outline the method to be

FIG. 102. PROBLEM XXVII.

followed. The circuits 1, 2, 3, etc., have resistances and

capacities R^R^, Rz , etc., and (7, , <7
2 , (7

3 , etc. The resist-

ance and capacities of the mains are Ra and Ca for the por-

tion a
; fit and (7& for the portion b between circuits 1 and

2; EC and Cc for the portion C\ etc. 7?
r and 6" are the

equivalent resistance and capacity for circuit 1 and the part

of the system beyond, as indicated in Fig. 101. R" and

C" are the equivalent resistance and capacity for circuit;
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2 and the part of the system beyond, as indicated in Fig.

102. Similarly, R'"
9
R" ff

, C"", C"" have values as indi-

cated. The values for the equivalent resistances and ca-

pacities are found by the successive applications of the

formulae (356 a) and (356 b). The complete solution is given

in Fig. 103, and its construction is similar throughout to

FIG. 103. PROBLEM XXVII.

that of Fig. 76, PROBLEM XII. E19 E, , E, , etc., give the

impressed E. M. F.'s of the several parallel branches. By
erecting an E. M. F. triangle on each, the effective E. M. F.

and so the current in each branch may be found in the

usual way. Thus in branch 3, L N is the effective E. M. F.,

and 7
3
the current. Ea , EI> , Ec , etc., give the impressed

E. M. F.'s in the portions a, b, c, etc., respectively, and the

currents are easily found from the effective E. M. F.'s

Ra lat Rb Ibi Rc lc-> etc. The full construction can best

be followed by comparing PROBLEM XII., the similar case

of circuits with resistance and self-induction.



CHAPTER XX.

CIRCUITS CONTAINING RESISTANCE, SELF-INDUCTION, AND
CAPACITY.

CONTENTS : Introductory. Graphical methods for circuits with R, L, and

G based upon graphical methods for circuits with R and Z, and R
and G. Diagram of four E. M. F.'s. Triangle of E. M. F.'s. Method

consistent with analytical results obtained for circuits with R, L, uud

G. Capacity or self-induction which is equivalent to a combination of

capacity and self-induction.

Prob. XXVIII. Effects of the Variation of the Constants in Series Circuit.

R, L, G, and &j varied.

Prob. XXIX. Series Circuit. Current given. Equivalent R, L, and G
of Series Circuit.

Prob. XXX. Series Circuit. Impressed E. M. F. given.

Prob. XXXI. Divided Circuit. Impressed E. M. F. given. Equivalent

R, L, and G of Parallel Circuits.

Prob. XXXII. Example of a Divided Circuit. Impressed E. M. F.

given.

Prob. XXXIII. Divided Circuit. Current given.

Prob. XXXIV. Series and Parallel Combinations of Circuits.

IN the foregoing chapters the complete graphical solu-

tions have been given for any combination of circuits in

series and parallel when the circuits contain resistance and

self-induction or when they contain resistance and capacity.

In the first, the impressed E. M. F. of the source is equal
to the E. M. F. necessary to overcome resistance plus the

E. M. F. necessary to overcome the counter E. M. F. of

self-induction ;
in the second, the impressed E. M. F. is
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equal to the E. M. F. necessary to overcome the resistance

plus the E. M. F. necessary to overcome that of the con-

denser. In each of these cases the three E. M. F.'s were

represented by the three sides of a triangle.

Where a circuit contains resistance, self-induction, and

capacity there are four E. M. F.'s to be considered. The

impressed E. M. F. is equal to the sum of the E. M. F.'s

necessary to overcome the resistance, the self-induction,

and the condenser E. M. F., respectively.

The E. M. F. to overcome resistance is R /; that to

overcome the self-induction is L aa I and is 90 ahead of

the current ; and that to overcome the E. M. F. of the con-

denser is
-p

and is 90 behind the current. These may

be drawn as the lines A, A B, and B C, respectively, in

Fig. 104, and the geometrical or vector sum C accord-

ingly represents the impressed E. M. F.

FIG. 104. DIAGRAM OF ELECTROMOTIVE FORCES IN A CIRCUIT WITH

RESISTANCE, SELF INDUCTION, AND CAPACITY.

Now the E. M. F. to overcome that of self-induction and

that of the condenser are always in exactly opposite direc-

tions, and when combined give one E. M. F. at right angles
to the current. Thus, in Fig. 104, A (J represents the com-

bined effect of the E. M. F.'s L GO /and -^ , represented by
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A B and B C, respectively, and is equal to
(

L GO
)
/.

\L/ GO I

We may, therefore, represent the E. M. F.'sin a circuit con-

taining resistance, self-induction, and capacity by a triangle

whose sides represent, respectively, the impressed E. M. F.,

that necessary to overcome resistance, and that necessary
to overcome the E. M. F. of self-induction and capacity
combined. Fig. 104 may then be drawn as Fig. 105. When

77 is greater than L GO, the current is ahead of the im-
G GO

pressed E. M. F.; and when 77 is less than L GO, the cur-
ly GO

rent lags behind.

FIG. 105. TRIANGLE OF ELECTROMOTIVE FORCES IN A CIRCUIT WITH

RESISTANCE, SELF-INDUCTION, AND CAPACITY.

The tangent of this angle of lag or advance is

tan = RI

When positive, the angle is one of advance ; when negative,

one of lag. Tan = reactance -v- resistance.

The impressed E. M. F. 6~C, being equal to the square

root of the sum of the squares of the two sides of the tri-

angle, is
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But this radical is the expression called the impediment

(see page 131), and we may therefore write

E. M. F.
Current =

Impediment*

which corresponds to Ohm's law.

We have now established the graphical method of repre-

senting the E. M. F.'s in a simple circuit containing resist-

ance, self-induction, and capacity, basing it upon the

graphical solutions already given for circuits containing

resistance and self-induction, and circuits containing re-

sistance and capacity alone. These were separately ob-

tained from the analytical equations previously given.

Let us now compare these graphical methods with the

analytical results obtained in the discussion of circuits

containing resistance, self-induction, and capacity. The

general solution for current in a circuit with an harmonic

impressed E. M. F. is [see (181)]

E (

^ = -sin \ (tftf+tan-
1

This shows that the current has an angle of lag or advance
whose tangent is

E

the angle being advance when positive and lag when nega-

tive, which corresponds to the graphical construction just

given. The maximum value of the current is

mpe
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These equations, being identical with those just obtained

graphically, show that the analytical results are correctly

represented by this graphical method.

CAPACITY or SELF-INDUCTION WHICH is EQUIVALENT TO A COM-

BINATION OF SELF-INDUCTION AND CAPACITY.

Let C ' or L' denote the capacity or self-induction which

is equivalent to a given combination of the two, that is,

which allows the same current to flow in the circuit when it

is substituted for the combination. Referring to Fig. 105, we

see that the E. M. F. of the combination is -7=
-- L GO I.

C GO

Regarding this as a positive quantity, i.e., supposing

7=y > L GO, we may put
Cy GO

(357) Hence G' =

which is positive since 1 > L C GO*.

If we suppose ^-^
< L GO, then Leo -~ is positive.

We may then put

L' col = L col -=
; or L'oo = L GO -

7= .C GO OGO

(358) Hence L' = L ~ ^ a positive quantity.

Problem XXVIII.-Effects of the Variation of the Con-
stants R, L, C, and GO.

RESISTANCE VARIED.

If the resistance alone be varied in a circuit containing
self-induction and capacity, it is interesting to inquire how
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the current changes. Since the combination of the self-

induction and capacity is equivalent to a self-induction or

a capacity, we may substitute this equivalent for the com-

bination. The change in the current caused by any varia-

tion in the resistance must therefore be the same as that

before explained (PROBLEMS I. and XVII.) in the case of

self-induction or capacity alone.

FIG. 106. VARIATION OP CONSTANTS. PROBLEM XXVIII.

In Fig. 106, 0~C represents the impressed E. M. F., E,

divided by the resistance R. The current / may either

advance ahead of or lag behind C according to whether

Y~y
is greater or less than L GO. For certain values of

resistance, self-induction, and capacity let O A represent

the current in advance of the impressed E. M. F., which

signifies that -~ > L GO. Make D equal to C'E GO, and
C GO

draw the semi-circle A D upon D as diameter. This

is then the locus of the current vector A as the resistance

alone changes, as explained in Problem XVII.

Similarly, if the quantity TT^
L GO had been negative

and of an equal magnitude to its former positive value, the

current would have been represented by B lagging behind

O C, and any variation in the resistance alone would cause

the current vector to .move upon the semi-circle B Et

being equal to E when the resistance is zero, as explained
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in PEOBLEM I. It is to be noticed that Fig. 106 is the same

as Figs. 52 and 86 combined.

The arrows R, R, show the direction of change as the

resistance increases.

SELF-INDUCTION on CAPACITY VARIED.

When either the self-induction or capacity alone is varied,

it is evident that the value of the quantity -~-- L GO and,C co

therefore, the value of the equivalent self-induction, L ',

or equivalent capacity C' 9
is changed. Now any varia-

tion in the equivalent self-induction will cause the cur-

rent vector to move on the semi-circle B O, as explained

in PROBLEM I., and any variation in the equivalent

capacity will cause the current vector to move on the

semi-circle A C, as explained in PROBLEM XYII. Any
change, then, in self-induction or capacity will cause the

current to move through some part of the circle AC B,

whose diameter is O O equal to
^-.

The arrow Z,(7 shows the direction of change as the

capacity or the self-induction increases.

FREQUENCY VARIED.

When the frequency of alternation is varied, it is equiv-

alent to a variation of ft?, the angular velocity, which is

equal to 2 n times the frequency. Any increase in the fre-

quency increases the effect of the self-induction or the

capacity. If the self-induction is the more important ele-

ment and the circuit has an equivalent self-induction [see

equation (358)],

L'-L l '

L - L ~ '
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any variation in the frequency will cause a variation in the

equivalent self-induction according to this equation. If

the capacity is the more important element, the equivalent

capacity varies with GO according to the equation (357),

C'=

It has just been shown that any variation in the equivalent

self-induction or capacity causes the current vector to move,

between limits, on the circle A C B. This, then, is the

effect of a change in frequency. The direction of this

change, as the frequency increases, is shown by the arrow

Z, C in Fig. 106.

Problem XXIX. Series Circuit. Current Given.

Let there be a circuit having n different coils and con-

densers in series as represented in Fig. 107. It is required

to find the impressed E. M. F. necessary to cause the cur-

rent / to flow, and the difference of potential at the termi-

nals of each coil and condenser.

FIG. 107. PROBLEM XXIX. AND PROBLEM XXX.

In Fig. 108 make A equal to the given current /.

Lay off B equal to R
v 1\ ,

and makeB C equal to Z, GO 1

perpendicular to B in the positive direction. Then in

the negative direction make B D equal to ~ The
Oj GO .

algebraic sum of B C and B D is BE. Then OE repre-

sents the potential difference between M and 0, Fig. 107
;
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C, the potential difference between M and JV
; and J3 1),

or C E, the potential difference between N and 0, the

terminals of the condenser. In a similar manner the lines

E G, EIy
I K, and 1M are drawn representing the poten-

PIG. 108. PROBLEM XXIX AND PROBLEM XXX.

tial difference between P, Q, QR, and Q S, respectively,

Fig. 107, until we finally reach the point J/, Fig. 108. ~OM
is then the required impressed E. M. F. necessary to cause

the current I to flow.

EQUIVALENT RESISTANCE, SELF-INDUCTION, OK CAPACITY OF

SERIES CIRCUITS.

It is evident from Fig. 108 that if we had one coil only,

whose self-induction L' is such that the line NM is equal

to L '

GO I, and whose resistance R' is such that the line

O~N is equal to R' /, the same current / would flow if this

coil be substituted for the combination of condensers and

coils. The resistance of this equivalent coil must evi-

dently be

(359) R = R, + R, + E, + etc. = 2 R.

The self-induction of the coil, being represented by MN
divided by </, is evidently found thus :
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v = BIT- BD-\-F~G-TTl+ 7K- JL, or

(360)

If it happens that this sum is a negative quantity, the

self-induction cannot replace the combination, but a con-

denser can. It will be seen that the capacity of this con-

denser C' may be found as follows :

C'GO

(361) Hence C' = --73-
oo 5^

These equations, (359), (360), and (361), give the means for

computing the equivalent resistance, self-induction, and

capacity of series circuits.

Problem XXX. Series Circuit. Impressed E. M. F.

Given.

Suppose the impressed E. M. F., represented by the

line J/, Fig. 108, is given, and the circuit is that shown

in Fig. 107. It is required to find what current will flow

and what is the E. M. F. at the terminals of each coil and

condenser.

If the equivalent self-induction L' given by equation (360)

;ibove, or the equivalent capacity C' given by equation (361),

is calculated, we may construct the triangle of E. M. F.'s
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M N, in which ON equals 1 2 It, and NM equals

12 \,L GL> -~
j.

The current A is found by dividing

N by 2 R. After we have obtained the value of the

current, we may proceed, as in the preceding problem, to

find the E. M. F. in each part of the circuit.

Problem XXXI. Divided Circuit. Impressed E. M. F.

Given.

Let us consider the problem of a divided circuit having

resistance, self-induction, and capacity in each branch, as

shown in Fig. 109. The impressed E. M. F., E, is given ;

c 8

FIG. 109. PROBLEM XXXI.

it is required to find the main and branch currents. The

construction in Fig. 110 gives the complete solution. Since

the impressed E. M. F. at the terminals of each branch is

known, each may be separately treated as a simple circuit

containing resistance, self-induction, and capacity, as in

PROBLEM XXX. Upon A, which represents the impressed
E. M. F., E, a circle is drawn, and upon (TA the several

E. M. F. triangles OB A, C A, OD A, are erected with

angles 0, , 3 , 3 , of advance or lag according as -7=
(J co

is greater or less than L GO . The currents I
v , Tz , T

z are

found by dividing the corresponding effective E. M. F.'s

by the resistance E, , R^ , Rs , respectively, and the main

current, /, is found by taking the vector sum of the branch

currents. The problem is in every way the same as the
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problem of the parallel circuits witli the resistance and

self-induction, or with resistance and capacity, except that

the current in any one branch may be either in advance or

behind the impressed E. M. R, according to the particular

values of the resistance, self-induction, and capacity of that

branch.

EQUIVALENT KESISTANCE, SELF-INDUCTION, AND CAPACITY OF

PARALLEL CIRCUITS.

Let us suppose that for the parallel system there is sub-

stituted a simple circuit containing resistance and self-

induction, or resistance and capacity, such that the same

main current will flow. The investigation of the values of

equivalent resistance, self-induction, and capacity is similar

FIG. 110. PROBLEM XXXI.

to the determination of equivalent resistance and self-

induction, PROBLEM V., and first appeared in a paper by
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the authors in the Philosophical Magazine for September,
1892.

If we take the projections of the currents /, /,,/,, etc.,

upon the line A, we obtain the equation

(362) 7 cos =
I, cos 8, + 1, cos 0, + . . . = 2 I cos 0.

If we consider the projections of the currents upon a line

perpendicular to OA,vre obtain

(363) /sin =
1\ sin 8, + 72

sin 8,+ . . . = 2 /sin 0.

Since all the triangles DBA, OCA, etc., are right tri-

angles, we get the following relations :

(364) 7
E

E

- etc.

V It: + fe>
~ z

'

r> /

(365) cos =

cos 0, = -= etc.
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1

(J co

(366) sin 8 =

~n
--- A

C, GO
sin 6, =

,etc.

Substituting these values in (362), we have

I cos 6 R'
(367) 15-=-

Making a similar substitution in (363), we have

Z'a

(368) ^-^ =
n'""

03 '-
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Here the letters A and B are introduced to simplify the

resulting expressions.

Dividing (368) by (367), we have

(369) tan 6 = ^
Comparing (365) and (367), we obtain

(370) A = ^r, or ^ = 35?**.
Jtr ^L

Comparing (366) and (368), we obtain

(371) 00=
n

Sm^
,

or

For cos' 6 and sin
2 we may substitute the values

1 1 A*
cos 9 - -

"

i
-

1 +

With these substitutions equations (370) and (371) be-

come

(372) B' = -2rr=f'

Here A and ^ a? each stand for a summation, as ex-

pressed in (367) and (368), and are calculated from the

particular values of the resistance, self-induction, and

capacity of each branch. This gives a definite value to the

equivalent resistance, R f

, according to (372), and a de-
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finite value to -7^7
L' GJ, according to (373). There may

GO

be an indefinite number of values assigned to L' or C'

according to values assigned to the other, that is, we may
assume any value for L1 and by (373) determine the value

for C f

>
or vice versa.

If the right-hand member of (373) is positive, we may
consider that the equivalent circuit has no self-induction,

i.e., L' = 0, and calculate the equivalent capacity. If this

member is negative, we may consider that the equivalent

circuit has no condenser, i.e., C' = oo, and calculate ac-

cordingly the equivalent self-induction. In any case,

therefore, we may speak of the equivalent resistance and

self-induction, or the equivalent resistance and capacity of

a combination of circuits, according as the equivalent

simple circuit would have self-induction or capacity.

The angle of lag or advance of the main current is ob-

tained from equation (369).

BRANCH CIRCUITS WITH RESISTANCE AND SELF-INDUCTION ONLY.

There is no condenser in any branch and the capacity

of each is, therefore, infinite. We can, accordingly, obtain

the expressions for A and B GO for this case by substituting

C = GO in the summations in (367) and (368). This gives

R

L GO
- ^ w ^r ^ , TV _a '

JLi r- J_j GO

From (372) and (373), we have

r>,_"
9 + B*

-Boo
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These results are seen to be identical with those obtained

in PROBLEM Y. and given in equations (352) and (353).

BRANCH CIRCUITS WITH EESISTANCE AND CAPACITY ONLY.

In this case there is no self-induction in any branch, and

the expressions for A and B GO are found by substituting

L = in the summations in (367) and (368). This gives

1

C GO - C

The expression for E1
is the same as that in (372), and

from (373) we get an expression for the equivalent capacity,

thus:

C' GO
~"
A* + B* GO*

'

These results are identical with those previously given

in PROBLEM XXI.

Problem XXXII. Example of a Divided Circuit,

Impressed E. M. F. Given.

Suppose a divided circuit has a condenser with a

capacity C of one micro-farad in one branch, and a coil

whose self-induction L is one henry and resistance R one
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hundred ohms in the other branch, as in Fig. 111. Let

the impressed E. M. F. be one thousand volts, and 2 ?r times

C=1 Micro-Farad

R=1OO Ohms

L=1 Henry

-1OOO Volts

FIG. 111. PROBLEM XXXII.

the frequency be one thousand. What are the currents in

the main line and branches ?

Since there is no resistance in the condenser branch,

the current, B> Fig. 112, is ninety degrees in advance of

CEW = 1 Ampere -4*=-1 ArfTpere

FIG. 112. PROBLEM XXXII.

the impressed E. M. F., O A, and is equal to GEco = 10~ 8

X 1000 X 1000 = 1 ampere. The tangent of the angle of

L GO 1 X 1000
lag of the current in the coil is

~jr~> equal
to ^^ 10,

100

and therefore the current, O D, in the coil is almost ninety

degrees behind the impressed E. M. F.
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The current D is almost equal to one ampere, for 0~D

is almost equal to O C, and

E 1000
O C -f T-rrrnnTf * Ampere.L QO 1 X

We have, then, the condenser current OB and the coil

current D, each equal approximately to one ampere,
one in advance of the E. M. F. and the other lagging

behind. The resultant of these two branch currents is

OE and is equal to one tenth of an ampere, approx-

imately ;
that is, each branch current is about ten times as

large as the main current. In this case the main current

is almost in phase with the impressed E. M. F., being in

advance of it by a small angle.

Problem XXXIII. Divided Circuit. Current Given.

If we have a number of parallel circuits, containing

resistance, self-induction, and capacity, and know the value

of the main current, 7, the solution is similar to that given

in PROBLEM VI. The first method of solution consists in

assuming an impressed E. M. F., solving as in the previous

problem, and then correcting the scale to agree with the

given value of the current. The second method consists in

computing the equivalent resistance and equivalent self-in-

duction or capacity of the parallel system, according to the

formulae (372) and (373), finding graphically the impressed
E. M. F., and then solving according to the last problem.

Problem XXXIV. Series and Parallel Combinations of
Circuits.

In the graphical treatment of circuits with resistance

and self-induction, and of circuits with resistance and

capacity, the discussion was given first of series circuits
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and then of circuits connected in parallel. It was then

shown how problems arising from any combination of

circuits in series and parallel could be readily solved by

repeated applications of the methods given for the solution

of series and parallel circuits. In the problems given for

circuits containing resistance, self-induction, and capacity

the full solution has been given for series and for parallel

circuits. These principles may be applied in solving any
combination of series and parallel circuits, and to go

through particular examples of these would be needless.

The same problems as those given for a circuit with re-

sistance and self-induction or capacity can be solved in the

same way if the circuits contain all three. The problems

given have been selected as examples and not as exhaus-

tively representing all the problems which these graphical

methods are adapted to solve. The various combinations

which arise are endless and may often be solved in more

ways than one. The choice of method depends upon the

particular requirements of the problem. A clear idea of

the principles involved in the simple cases will enable one

to extend them with ease to whatever problems arise.
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RELATION BETWEEN PRACTICAL AND C. G. S. UNITS.
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SOME MECHANICAL AND ELECTRICAL ANALOGIES.

TABLE I. LINEAR MOTION.

Notation.

1. Time = t.

2. Distance = s.

ds
3. Linear velocity = v = -TT ; or, ds = vd t.

dv d*s
4 Linear acceleration = a = -JT = -777.dt dt9

5. Mass = M.

6. Momentum = Mv.

Frictional Resistance.

1. Frictional resistance = R.

8. Force to overcome resistance = FR = It v.

9. Energy expended in the time d t in overcoming resist-

ance = d WR = FR d s Rv* d t.

Inertia.

10. Force to overcome inertia = F' = Ma M-j-r .

at
11. Kinetic energy acquired in the time d t

dv ,

dt
'

.

/
v dvMv

-j-rdt
= %Mv*.

Resistance plus Inertia.

dv
13. Total force applied = F = FB+ F f = Rv +M-77 .

a t

14 Total energy supplied in the time dt

= dW= dWR -\-dW; or, Fds FR ds + F'ds
;

or, Fvdt = Rv*dt +Mv^ dt.

313
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TABLE II. KOTAEY MOTION.

Notation.

1. Time = t.

2. Angle = 0.

d(f>
3. Angular velocity = GO = -7 ; or, d = a? d t.

doo
4. Angular acceleration = a = -JT- = -TIT

5. Moment of inertia = /.

6. Angular momentum = IGO.

Frictional Resistance.

1. Frictional resistance = R.

8. Torque to overcome resistance = TR = H GO.

9. Energy expended in the time d t in overcoming resist

ance = dWR = TRd0 = Rri'dt.

Inertia.

rpt _ Ts, 7^
dt

10. Torque to overcome inertia = T' = la = J-rr .

11. Kinetic energy acquired in the time d t

12. Kinetic energy = W =
f^Ico-^dt

= I IGO\

Resistance plus Inertia.

13. Total torque applied = T = TR+ T' = E <*> +
14. Total energy supplied in the time d t

dW'\ or, Tdcf> = TR d</>+ T'

or, Toodt =
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TABLE III. ELECTKIC CUBBENT.

Notation.

1. Time = t.

2. Quantity = g.

3. Current = 1 = -; or, dq = idt.

di
4. Current acceleration = ft

= -TT

5. Coefficient of self-induction = L.

6. Electro-magnetic momentum = Li.

Ohmic Resistance.

7. Ohmic resistance = It.

8. Electromotive force to overcome resistance = eR = R i.

9. Energy expended in the time d t in overcoming resist-

ance = d WR = eRdq = R i
2 d t.

Self-induction.

10. Electromotive force to overcome self-induction

11. Energy acquired by the magnetic field in the time d t

12. Energy of magnetic field W'^T Li

Resistance plus Self-induction.

13. Total electromotive force applied

= e = eR + e' = R i +
L-g-j..

14. Total energy supplied in the time d t

dW=dWR -}-dW''t or, edq = eR dq +e'dq;

or,
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NOTATION USED THROUGHOUT THIS BOOK.

(Numbers refer to page where first used.)

A. Area, 67
; or, constant, 41.

B. Constant, 41.

B. Induction per square centimeter, 22.

C. Capacity, 64
; or, constant, 41.

C'. Equivalent capacity, 279.

D. Symbolic operator, 84.

E. Constant E. M. F., 25 ; or, maximum value of har-

monic E. M. F., 50.

E. Virtual E. M. F., i.e., square root of mean square

value, 38 and 143.

F. Force, 20.

H. Magnetizing force, 21.

I. Constant current, 25 ; or, maximum value of har-

monic current, 53.

/. Virtual current, i.e., square root of mean square

value, 38 and 143.

Im. Impedance, 188.

Z. Coefficient of self-induction, 23.

L'. Equivalent self-induction, 235.

N. Total induction, i.e., total number of lines, 21.

0. Origin. Center of revolution, 33.

Q. Constant quantity ; or, charge of electricity, 25.

It. Resistance, 24.

R'. Equivalent resistance, 235.
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T. Period, 33
; or, time constant, 46.

V. Potential, 63.

TF. Work or energy, 28.

a. Amplitude, 33
; or, constant, 86.

b. Constant, 57.

c. Arbitrary constant of integration, 44.

d. Distance, 67.

e. Instantaneous value of electromotive force, 25.

/. Arbitrary function, 43.

f. First differential coefficient of/, 71.

h. Constant, 184.

i. Instantaneous value of current, 25.

j. 1/-^1, 93.

k. Constant, 183.

I. Constant length, 201.

m. Strength of pole, 20
; or, constant, 96.

n. Frequency, 34
; or, constant, 58.

p. An abbreviation, 191.

q. Instantaneous value of charge, 25.

r. Distance, 20; or, constant, 190.

t. Time, 34.

x. Independent variable, 41 ; also length or distance,

178.

y. Dependent variable, 34.

z. Dependent variable, 42.

a. An abbreviation, 191
; or, a constant, 41.

ft. Constant, 41.

y. Constant, 41.

e. Naperian base, (2.71828), 44.

-f- 6. Angle, usually of advance, 35.

B. Angle, usually of lag, 35.
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K. Specific inductive capacity, 61 ; or, Constant, 206.

A. Wave-length, 196.

/*. Permeability, 22.

TT. Batio of circumference to diameter, (3.14159), 21.

2. Summation, 59.

r. 1 -T- time-constant, -^ , 126.

$. Arbitrary constant, 95.

0. Angle, 34.

X. Angle, 150.

i/>.
Current angle, 55.

ft?. Angular velocity, 2 it n, 34.

For graphical conventions, see 219.
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Acceleration, unit of, 18
Addition of harmonic electromotive

forces, 213
Addition of harmonic functions, 38

Advance, angle of, 35, 78, 134
Air-chamber analogue of condenser,

272

Ampere, 22

Amplitude, 33

Analogies, mechanical, 313

Analytical treatment (see Contents),
7, 17

Angle of advance, 35, 78, 134

Angle of lag, 35, 54, 134

Angle of phase, 34

Angle of epoch, 34

Angular velocity, 34, 50

Apparent resistance, 53, 79, 131

Arrows, meaning of, 221

Attraction, law of,
for charged bodies, 60
for magnetic poles, 20

Average value of sine-curve, 36

B
B, Induction, 22
Backward waves, 202, 205
Ballistic galvanometer, 26

Cable, distributed capacity of, 176

Capacity, distributed, 176

Capacity, effects of variation of,
in parallel circuits with resist-

ance, 285
in series circuit with resistance,

276
in series circuit with resistance

and self-induction, 138, 298

Capacity, equivalent,
for parallel circuits, 281, 283
for parallel circuits with self-

induction, 303
for series circuits, 279
for series circuit with self-in-

duction, 296, 300

Capacity of a condenser, 65

Capacity of a conductor, 64

Capacity of continuous wire, 67
Capacity of parallel plates, 67
Capacity varied

in parallel circuits with resist-

ance, 285
in series circuit with resistance,

in series circuit with resistance
and self-induction, 138, 298

C. G. S. units, 18, 312

Charge, energy of, 64

Charge equation
for any periodic E. M. F., 157
for charging a condenser, 118
for circuits with resistance and

capacity, 72
for circuits with resistance and

capacity and harmonic E. M. F.,
78
for discharge through circuits

with resistance, self-induction,
and capacity :

general forms, 97

non-oscillatory, 99

oscillatory, 107
when R* G= 4L, 109

for discharging condenser, 73
for non-oscillatory charging,

1 lo
for oscillatory charging, 120
when & C=4L, 122
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Charge, for circuits with resistance,

self-induction, and capacity, 112

Charge, general solution for,
in circuits with resistance and

capacity, 72
in circuits w.ith resistance, self-

induction, and capacity, 87

Charge of a condenser, 74

Charge, unit of, 25, 61

Charging a condenser, 117

Charging equations, three forms of,

114

Charging, non-oscillatory, 114
determination of constants, 114

discussion, 116

Charging, oscillatory, 119
determination of constants, 119

discussion, 120

Charging when R*C=4:L, 121
determination of constants, 121

discussion, 122

Circles, meaning of, 221
Closed arrows, meaning of, 221
Closed circuits, wave-propagation in,

201

Coefficient of self-induction, 23
Combination circuits

with resistance and capacity,
286, 287, 288
with resistance and self-induc-

tion, 248
with resistance, self-induction,
and capacity, 310

Complementary function, 73, 92,
96

Composition of harmonic electromo-
tive forces, 213

Composition of harmonic functions,
38

Condenser, 65

capacity of, 65

discharge of, 72
electromotive force of, 69

energy of, 65
mechanical analogue of, 272

Conductor, energy of, when
charged, 64

Conjugate imaginaries, 94
Constant current example, 246
Constant potential example, 245

Constants, variation of,

in parallel circuits with resist-

ance and capacity, 285
in parallel circuits with resist-

ance and self-induction, 242
in series circuit with resistance

and capacity, 274
in series circuit with resistance

and self-induction, 222

Constants, variation of, in series cir-

cuit with resistance, self-induc-

tion, and capacity, 134, 296
Construction of logarithmic curve,
46

Continuous conductor, capacity of,

Conventions adopted 219, 316
Cosine expanded, 93

Cosine, exponential form of, 93
Coulomb's law

for attraction between poles, 20
for attraction between charged

bodies, 60
Counter-electromotive force of self-

induction, 29
Critical case of discharge, 108

of charge, 121

Criterion of integrability, 43, 71
Current at the "

make," 55, 144
Current equation,

any periodic E. M. F., 157
for charging a condenser, 118
for circuits containing resist-

ance only, 133
for circuits with capacity only,
134
for circuits with distributed

self-induction and capacity, 192

for circuit with resistance and

capacity, 72
for circuits with resistance and

capacity, and an harmonic
E.M.F., 78, 133
for circuit with resistance and
self-induction, and harmonic
E. M. F., 53, 132
for discharging condenser, 73

Current equation for discharge
through circuit with resistance,

self-induction, and capacity, 92, 97

non-oscillatory, 99

oscillatory, 107
when R*C=L, 109

Current equation for establishment
of current in circuit with R and
L, 117

Current equation,
for non-oscillatory charging,
115
for oscillatory charging, 120
when R?C = 4 L, 122

Current, general solution for,

in circuits with resistance ana
self-induction, 44
in circuits with resistance and

capacity, 72
in circuits with resistance, self-

induction, and capacity, 84, 86
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Current graphically shown by closed

arrows, 221

Current, unit of, 22

Curves, types of, 163

D
D, symbolic operator, 84

Decay of waves
in circuit with distributed ca-

pacity, 197
in circuit with distributed ca-

pacity and self-induction, 200

Decreasing amplitude of waves
in circuits with distributed ca-

pacity, 197
in circuits with distributed ca-

pacity and self-induction, 199

Direction of rotation, 221

Direction of rotation of E. M. F.

vectors, 261

Differential equations
for charging, 113

for circuits with resistance and

capacity, 72
for circuits with resistance and

self-induction, 43
for circuits with resistance, self-

induction, and capacity, 84
for discharge, 91

Dimensions of impediment, 132

Dimensions of L GO, 55

Discharge through circuit with re-

sistance and capacity, 72, 104

Discharge through circuit with re-

sistance, self-induction, and ca-

pacity, 90

non-oscillatory, 98

oscillatory, 105
when R- C=4L, 108

Distributed capacity, 176

with no self-induction, 194
with self-induction, 198

Divided circuit

with resistance and capacity,

280, 282, 284
with resistance and self-induc-

tion, 233, 236, 241

with resistance, self-induction,

and capacity, 302, 308, 310

Dying away of current in circuit

with resistance and self-induc-

tion, 44, 103

Dyne, 18

E

Et e. Electromotive force, 25

Earth inductor, 26
Effective electromotive force, 55

Effects of varying constants
- in parallel circuits, 242, 285

in series circuits, 134, 222, 274,
296

Electrical analogies, 313
Electrical horse-power, 29

Electromagnetic induction, 21

Electromotive force

diagram for circuits with re-

sistance, self-induction, and ca-

pacity, 293

equation for circuit with resist-

ance and capacity, 69, 70

equation for circuit with resist-

ance and self-induction, 31, 42

equation for circuit with resist-

ance, self-induction, and ca-

pacity, 83

equation for circuit with dis-

tributed self-induction and ca-

pacity, 190

graphically shown by open
arrows, 221
law of, 23
maximum value of, 50
of condenser, 69
of condenser graphically rep-

resented, 269, 271

of self-induction, 29
of self-induction graphically

represented, 220

triangle of, for circuits con-

taining resistance and capacity,
268

triangle of, for circuits with
resistance and self-induction,

217
unit of, 24

Electromotive forces

in parallel, 263
in series, 260
with different periods, 264

E. M. F. vectors, rotation of, 261

Energy dissipated in heat, 27

Energy, equation of, for circuit with
resistance and capacity, 67

equation of, for circuits with
resistance and self-induction, 30

equation of, for circuits with

resistance, self-induction, and

capacity, 82

imparted to a circuit, 29, 142

of a charged conductor, 64

of a condenser, 66

of magnetic field, 29

unit of, 28

Epoch, 34

Equation of energy for circuits with
resistance and capacity, 67
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Equation of energy
for circuits with resistance and
self-induction, 30
for circuits with resistance,

self-induction, and capacity, 82

Equation of E. M. F.'s

for circuits with resistance and
capacity, 69, 70
for circuits with resistance and

self-induction, 31

for circuits with resistance,

self-induction, and capacity, 83

Equivalent capacity
of parallel circuits, 281, 283
of parallel circuits with self-

induction, 303
of series circuits, 279
of series circuits with self-in-

duction, 296, 300

Equivalent resistance

of parallel circuits, 235, 238,

281, 283, 303
of series circuits, 279, 300

Equivalent self-induction

of parallel circuits, 235, 238
of parallel circuits with ca-

pacity, 303
of series circuits, 296, 300

Erg, unit of energy, 28
Establishment of current

in circuit with resistance and

capacity, 117
in circuit with resistance and

self-induction, 48
in circuit with resistance, self-

induction, and capacity, 112

Example of a divided circuit with
resistance, self-induction, and ca-

pacity, 309

Expansion of sine and cosine, 93

Expenditure of energy in a circuit,
82

Explanation of exponential term, 55

Exponential form of sine and co-

sine, 93

Exponential term,
effect of, at "make," 56

explanation of, 55

Faraday's law, 23
Field of force, 18

intensity of, 20
unit field, 21

Force,
law of, for charged bodies, 60
law of, for magnetic poles, 20
unit of, 19

Formulae of reduction, 51, 52
Forward waves, 202, 205
Fourier's Theorem, 41

Frequency, 34
variation of, 140, 298

Fundamental units, 18

G

Galvanometer, ballistic, 26
General solution for charge

in circuits with resistance and
capacity, 72
in circuits with resistance, self-

induction, and capacity, 87
General solution for current

in circuits with resistance and
capacity, 72
in circuits with resistance and

self-induction, 44
in circuits with resistance, self-

induction, and capacity, 84, 86

Graphical representation
of a simple harmonic E.M.F.,

212
of the sum of several harmonic

E. M. F.'s, 213

Graphical treatment, 11. 209

symbols adopted, 219

H, magnetizing force, 21

Harmonic electromotive force

discussion, 130

general solution, 124

graphical representation of,212
in circuit with resistance and

capacity, 76
in circuit with resistance and

seif-induction, 50
solution from differential equa-

tions. 127
Harmonic functions, 32

addition of, 38
Harmonic motion, 33

Heating effect, 27
same with as without self-in-

duction and capacity, 163
Horse power, electrical, 29

/, , current, 25

I, maximum value of current, 53, 79,.

131

Impedance, 53, 79, 131

measurement of, 230
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Impediment, 131, 295
dimension of, 132

Impressed electromotive force, 55

Induction, 21

Inductive resistance, 54
Infiuite capacity, 67

Integrability, criterion of, 43, 71

Integration by parts, 51

Intensity of a field of force, 20

j = y -
1, 93

Joule, unit of energy, 28
Joule's law, 26
Just non-oscillatory

charge, 121

discharge, 110

K, specific inductive capacity, 61

L, coefficient of self-induction, 23

Lag,
angle of, 35, 54, 133, 134
measurement of, 230

Law of attraction

for charged bodies, 60
for magnetic poles, 20

Law of Coulomb, 20
of Faraday, 23
of Joule, 24
of Ohm, 26

Linear equation, 43, 44, 86
Line of force, 18, 21

Lines of induction, 21

Limitations of the telephone, 200

Logarithmic curve, construction of,

46

Loo, dimensions of, 55

M
Magnetic field, energy of, 29

intensity of, 20

Magnetic pole, 18

Magnetizing force, 21

Make, current at, 56, 144
Maximum oscillation, 153
Maximum value of harmonic cur-

rent, 58, 79, 181
Mean square value of a sine-curve,

37

Measurement by three-voltmeter

method, 230
Mechanical analogue of condenser,

272
Mechanical analogies, 313

Method used in graphical treatment,
219

Multiple-arc arrangement
of circuits with resistance and
capacity, 289
of circuits containing resistance
and self-induction, 256

Multiple-valued function, 38

//, permeability, 22

N
N, total induction, 21

n, frequency, 34

Negative direction of rotation, 221

Neutralizing of self-induction and

capacity
at every point of time, 158

necessary conditions for, 162

Neutralizing of self-induction and

capacity impossible except for

sine-curve, 175

Non-oscillatory charging, 114
determination of constants, 114

discussion, 116

Non-oscillatory discharge, 98
determination of constants, 98

discussion, 99

Notation, 219 (see also Appendix) 316

O
Ohm's law, 24, 158

Ohm, unit of resistance, 24

Open arrows, meaning of, 221

Oscillation a maximum, 153

Oscillatory charging, 119
determination of constants, 119

discussion, 1 20

Oscillatory discharge, 105
determination of constants, 105
discussion of, 107

Parabola and sine-curve example,
167

Parallel circuits

with resistance and capacity,
280, 282, 284
with resistance and self-induc-

tion, 233, 236, 241

with resistance, self-induction,
and capacity, 302, 308, 310

Parallel plates, capacity of, 67
Particular E M. F.'s, 87

Period, 33

Periodic functions, 38
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Periodic E. M. F. in circuit with
resistance and capacity, 79

in circuit with resistance and
self-induction, 57
in circuit with resistance, self-

induction and capacity, 124

Periodicity, 34

Permeability, 22

Phase, 34

Pole, unit magnetic, 18
Positive and negative flow of alter-

nating current equal, 164
Positive direction of rotation, 33, 221

Potential, 61, 63
Potential of a conductor with dis-

tributed self-induction and ca-

pacity, 190

Power, measurement of, by three

voltmeters, 232
Practical units, 312

Problems, see Contents, 11

Propagation of waves, rate of,

in circuits with distributed

capacity, 195
in circuits with distributed

capacity and self-induction, 198

Q
Quantity, Q,

definition of. 25
for half period, 164
unit of, 25, 61

Quickest charge, 121

Quickest discharge, 110

Kate of decay of waves
in circuit with distributed ca-

pacity, 197
in circuit with distributed capa-
city and self-induction, 200

Rate of propagation of waves
in circuit with distributed ca-

pacity, 195
in circuit with distributed ca-

pacity and self-induction, 198
Rate of work, 28

Reactance, 54, 59, 79, 294
Resistance, effect of variation of,

in parallel circuit with ca-

pacity, 285
in parallel circuit with self-in-

duction, 242.

in seriescircuit with capacity, 274
in series circuit with self-in-

duction, 223
in series circuit with resistance,

self-induction, and capacity, 135

Resistance equivalent,
of parallel, circuits, 235, 238,

281, 283, 303
of series circuits, 279, 200

Resistance, R, unit of, 24
Resultant of several harmonic
E. M. F.'s of the same period,
213

Rotation, direction of, 221
Rotation of E. M. F. vectors, 261

S

Self-induction, coefficient of, 23
electromotive force of, 220

Self-induction , effect of variation of,

in parallel circuits, 244
in series circuit, 225
in series circuit with resistance,

self-induction, and capacity,
137, 298

Self-induction, equivalent,
of parallel circuits, 235, 238
of parallel circuits with ca-

pacity, 303
of series circuit with capacity,

296, 300

Self-induction, measurement of, 230
Series and parallel circuits

with resistance and capacity,
286, 287, 288
with resistance and self-induc-

tion, 248, 250, 251, 252
with resistance, self-induction,

and capacity, 310
Series circuit

with resistance and capacity,
278, 279
with resistance and self-induc-

tion, 227, 228, 229
with resistance, self-induction,
and capacity, 299, 301

Several sources of E. M. F., 260

Sine-curve, 35

average value of, 36
mean square value of, 37

Sine-curve and parabola example,
167

Sine expanded, 93

Sine, exponential form of, 93, 186

Sine-functions, 32

Single-value function, 38

Specific inductive capacity, 61

Strength of a magnetic field, 20
Sum of harmonic E. M. F.'s of the

same period, 213

Symbols adopted in graphical treat-

ment, 219

Symbolic operator, 84, 128
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Telephone, limitations of the, 200

T, period, 33

T, see Time-constant.
Three-voltmeter method, 230
Time-constant

in circuit with resistance and

capacity, 74
in circuit with resistance and

self-induction, 46
in circuits with resistance, self-

induction, and capacity, 85
Transformation to real form, 93

Triangle of E. M. F.'s

for circuits with resistance and

capacity, 268

for circuits with resistance and
self-induction, 217
for circuits with resistance, self-

iuduction, and capacity, 293
Two E. M. F.'s in series, 260, 264

Types of curves, 163

U
Unit charge, 61

Unit current, 22
Unit magnetic pole, 18
Unit of energy, 28
Unit quantity, 25

Variation of capacity
in parallel circuits, 285
in series circuits, 138, 276, 296

Variation of constants in parallel
circuits, 285

Variation of constants in series cir-

cuits, 134, 274, 296
Variation of frequency

in series circuits, 140, 296
Variation of resistance

in parallel circuits, 242, 285
in series circuits, 135, 223, 274,

296
Variation of self-induction

in parallel circuits, 244
in series circuits, 137, 225, 296

Velocity, unit of , 18

Virtual values of E. M. F. and cur-

rent, 38, 54, 131, 143

Volt, 24

W
W, work or energy, 28

Watt, unit of work, 28

Wave-length, 206

Wave-propagation in circuits with
distributed capacity,

decreasing amplitude of, 197
nature of, 194
rate of, 195

Wave-propagation in circuits with
distributed capacity and self-in-

duction,

decreasing amplitude of, 199
nature of, 198
rate of, 198

Wave-propagation inclosed circuits,

201

Work done by harmonic current,
142

Work in moving charge, 62

GO, angular velocity, 34
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handle. A pair of flexible leads with tips is supplied with each Instrument for which
a special compartment is provided.

These Instruments are dead-beat without the u?e of a mechanical brake.

We also manufacture a full line of Switchboard and Portable Voltmeters and 'Am-

meters for either director alternating current circuits.

Our complete catalogue on request.

Keystone Electrical Instrument Co,
9th St. and Montgomery Ave., PHILADELPHIA



AD VERTISEMENTS.

Fort Wayne Electric Works
(INCORPORATED)

MANUFACTURERS OF THE

"WOODWUUU " FOR LIGHT
pQWER

OIL TRANSFORMERS

FOR ALL FREQUENCIES

BEST REGULATION
LOW CORE LOSS

INTERCHANGEABLE
PRIMARIES and

SECONDARIES

CAREFUL MECHANICAL
DESIGN

STANDARD LINES,

TYPES A and B

SUBWAY TYPE C

FOR DETAILS, WRITE FOR
'BULLETIN No. 1013

OUR . . .

TYPE K
INTEGRATING WATTMETERS

RECORD ACCURATELY
REGARDLESS OF POWER

FACTOR

THEY ARE DIRECT READING

ALL PARTS ARE
INTERCHANGEABLE

SEND FOR BULLETIN No. 1012

MAIN OFFICE
AND FORT WAYNE, INDIANA



AD VERTISEMENTS.

WAGNER
ELECTRIC MFG. Co/s

TRANSFORMERS
CONTINUE TO RANK FIRST IN ALL TESTS FOR EFFICIENCY,

REGULATION AND LIFE

TEN K. W.

BUILT FOR ANY PRACTICAL VOLTAGE, EFFICIENCY OR
REGULATION

HIGH TENSION TRANSFORMERS
FOR ANY CHARACTER OF SERVICE

SWITCHBOARDS

SWITCHBOARD VOLTMETERS

AMMETERS AND INDICATING WATTMETERS



AD VERTISEMENTS.

SINGLE-PHASE

SELF-STARTINGAC MOTORS
VERY SIMPLE AND EFFICIENT

BUILT FOR ANY FREQUENCY
SIZES # H, P. TO 35 H. P. NOW OPERATING

WAGNER ELECTRIC MFG. CO.
GENERAL OFFICE

ST. LOUIS, MO., U.S. A.

^BRANCH OFFICES:

NEW YORK : 222 Havemeyer Bldg.

PHILADELPHIA: 1000 Betz Bldg.
BOSTON : 620 Atlantic Avenue.

CHICAGO: 1624 Marquette Bldg.

BALTIMORE : 203 E. Lexington St.

SAN FRANCISCO: 593 Mission St.

NEW ORLEANS: 510 Gravier St.

FOREIGN DEPARTMENT:
223 Havemeyer Bldg., New York City.

YOKOHAMA, JAPAN :

Bagnall & Hilles, Agents.

LONDON. ENGLAND:
47 Victoria St., C. R. Heap, Agent.

CITY OF MEXICO:
Primera Humboldt-J2

Chas. L. Seeger, Agent.



AD VERTISEMENTS.

Westinghouse
INDUCTION MOTORS

Operating in all Trades Under All Conditions of Service

Secondary Element Primary Element

Westinghouse Induction Motor Complete

Westinghouse Electric
& Manufacturing Co., Pittsburg, Pa.

ALL PRINCIPAL CITIES IN UNITED STATES AND CANADA



AD VERTISEMENTS.

\
They Are

Portable Ammeters And
Voltmeters

HAVE MANY ADVANTAGES:

By providing several shunts the same instrument is available for widely
differing currents. For example with a single portable ammeter and shunts
for 5-50-500 amperes, readings may be taken on a finely graduated scale from
to 500 Amperes, either direct or alternating current.

'Permanently
Correct.

(Absolutely

dead-beat.

Not Affected by

Frequency.

Form of Wa<ve.

External Influences.

cMagnetism.

Temperature.

We unhesitatingly guarantee that these are the most accurate alternat-
\

'

i ing current measuring instruments on the market, without any exception * '

> whatever.

S. K. C and NORTHERN SYSTEMS. Direct and Alternating

Current Apparatus, Power Transmissions for the Greatest Dis-

tances. Mining, Factory, Railway and Lighting Equipments.

CTANLEY Electric

Manufacturing Co.
PITTSFIELD, MASS.

MORTHERN Electrical^
Manufacturing Co.

MADISON, WIS.



AD VERT1SEMENTS.

WESTON
STANDARD
PORTABLE
DIRECT-READING

VOLTMETERS GROUND DETECTORS AND
MlLLIVOLTMETERS QRCUIT TESTERS
VOLTAMMETERS WATTMETERS
AMMETERS OHMMETERS
MlLLAMMETERS PORTABLE GALVANOMETERS

WESTON STANDARD PORTABLE DIRECT-READING VOLTMETER
FOR DIRECT CURRENT

Our Portable Instruments are recognized as The Standard the world

over. The Semi-Portable Laboratory Standards are still

better. Our Station Voltmeters and Ammeters are

unsurpassed in point of extreme accuracy

and lowest consumption of energy.

Weston Electrical Instrument Company
JH-120 William Street, NEWARK, N. J., U.S. A,

-





UNIVERSITY OF CALIFORNIA LIBRARY

This book is DUE on the last date stamped below

Fine schedule: 25 cents on first day overdue

50 cents on fourth day overdue

NOV 1J 1947

,MOV
2~2 1947

JUL 2 G 1949

NOV 1 7 !-;9^

LD 21-100m-12,'46(A2012sl6)4120



859400

34-
t

THE UNIVERSITY OF CALIFORNIA LIBRARY




